| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjsumt.1 |
|- G e. CH |
| 2 |
|
pjsumt.2 |
|- H e. CH |
| 3 |
1 2
|
osumi |
|- ( G C_ ( _|_ ` H ) -> ( G +H H ) = ( G vH H ) ) |
| 4 |
3
|
fveq2d |
|- ( G C_ ( _|_ ` H ) -> ( projh ` ( G +H H ) ) = ( projh ` ( G vH H ) ) ) |
| 5 |
4
|
fveq1d |
|- ( G C_ ( _|_ ` H ) -> ( ( projh ` ( G +H H ) ) ` A ) = ( ( projh ` ( G vH H ) ) ` A ) ) |
| 6 |
1 2
|
chjcli |
|- ( G vH H ) e. CH |
| 7 |
|
pjid |
|- ( ( ( G vH H ) e. CH /\ A e. ( G vH H ) ) -> ( ( projh ` ( G vH H ) ) ` A ) = A ) |
| 8 |
6 7
|
mpan |
|- ( A e. ( G vH H ) -> ( ( projh ` ( G vH H ) ) ` A ) = A ) |
| 9 |
5 8
|
sylan9eqr |
|- ( ( A e. ( G vH H ) /\ G C_ ( _|_ ` H ) ) -> ( ( projh ` ( G +H H ) ) ` A ) = A ) |
| 10 |
6
|
cheli |
|- ( A e. ( G vH H ) -> A e. ~H ) |
| 11 |
1 2
|
pjsumi |
|- ( A e. ~H -> ( G C_ ( _|_ ` H ) -> ( ( projh ` ( G +H H ) ) ` A ) = ( ( ( projh ` G ) ` A ) +h ( ( projh ` H ) ` A ) ) ) ) |
| 12 |
11
|
imp |
|- ( ( A e. ~H /\ G C_ ( _|_ ` H ) ) -> ( ( projh ` ( G +H H ) ) ` A ) = ( ( ( projh ` G ) ` A ) +h ( ( projh ` H ) ` A ) ) ) |
| 13 |
10 12
|
sylan |
|- ( ( A e. ( G vH H ) /\ G C_ ( _|_ ` H ) ) -> ( ( projh ` ( G +H H ) ) ` A ) = ( ( ( projh ` G ) ` A ) +h ( ( projh ` H ) ` A ) ) ) |
| 14 |
9 13
|
eqtr3d |
|- ( ( A e. ( G vH H ) /\ G C_ ( _|_ ` H ) ) -> A = ( ( ( projh ` G ) ` A ) +h ( ( projh ` H ) ` A ) ) ) |