Description: Equality with a projection. (Contributed by NM, 20-Jan-2007) (Revised by Mario Carneiro, 15-May-2014) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | pjeq | |- ( ( H e. CH /\ A e. ~H ) -> ( ( ( projh ` H ) ` A ) = B <-> ( B e. H /\ E. x e. ( _|_ ` H ) A = ( B +h x ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pjhth | |- ( H e. CH -> ( H +H ( _|_ ` H ) ) = ~H ) |
|
2 | 1 | eleq2d | |- ( H e. CH -> ( A e. ( H +H ( _|_ ` H ) ) <-> A e. ~H ) ) |
3 | 2 | biimpar | |- ( ( H e. CH /\ A e. ~H ) -> A e. ( H +H ( _|_ ` H ) ) ) |
4 | pjpreeq | |- ( ( H e. CH /\ A e. ( H +H ( _|_ ` H ) ) ) -> ( ( ( projh ` H ) ` A ) = B <-> ( B e. H /\ E. x e. ( _|_ ` H ) A = ( B +h x ) ) ) ) |
|
5 | 3 4 | syldan | |- ( ( H e. CH /\ A e. ~H ) -> ( ( ( projh ` H ) ` A ) = B <-> ( B e. H /\ E. x e. ( _|_ ` H ) A = ( B +h x ) ) ) ) |