Metamath Proof Explorer


Theorem pjeq

Description: Equality with a projection. (Contributed by NM, 20-Jan-2007) (Revised by Mario Carneiro, 15-May-2014) (New usage is discouraged.)

Ref Expression
Assertion pjeq
|- ( ( H e. CH /\ A e. ~H ) -> ( ( ( projh ` H ) ` A ) = B <-> ( B e. H /\ E. x e. ( _|_ ` H ) A = ( B +h x ) ) ) )

Proof

Step Hyp Ref Expression
1 pjhth
 |-  ( H e. CH -> ( H +H ( _|_ ` H ) ) = ~H )
2 1 eleq2d
 |-  ( H e. CH -> ( A e. ( H +H ( _|_ ` H ) ) <-> A e. ~H ) )
3 2 biimpar
 |-  ( ( H e. CH /\ A e. ~H ) -> A e. ( H +H ( _|_ ` H ) ) )
4 pjpreeq
 |-  ( ( H e. CH /\ A e. ( H +H ( _|_ ` H ) ) ) -> ( ( ( projh ` H ) ` A ) = B <-> ( B e. H /\ E. x e. ( _|_ ` H ) A = ( B +h x ) ) ) )
5 3 4 syldan
 |-  ( ( H e. CH /\ A e. ~H ) -> ( ( ( projh ` H ) ` A ) = B <-> ( B e. H /\ E. x e. ( _|_ ` H ) A = ( B +h x ) ) ) )