Metamath Proof Explorer


Theorem pjfi

Description: The mapping of a projection. (Contributed by NM, 11-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypothesis pjfn.1
|- H e. CH
Assertion pjfi
|- ( projh ` H ) : ~H --> ~H

Proof

Step Hyp Ref Expression
1 pjfn.1
 |-  H e. CH
2 1 pjfni
 |-  ( projh ` H ) Fn ~H
3 1 pjrni
 |-  ran ( projh ` H ) = H
4 1 chssii
 |-  H C_ ~H
5 3 4 eqsstri
 |-  ran ( projh ` H ) C_ ~H
6 df-f
 |-  ( ( projh ` H ) : ~H --> ~H <-> ( ( projh ` H ) Fn ~H /\ ran ( projh ` H ) C_ ~H ) )
7 2 5 6 mpbir2an
 |-  ( projh ` H ) : ~H --> ~H