Metamath Proof Explorer


Theorem pjfni

Description: Functionality of a projection. (Contributed by NM, 30-Oct-1999) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypothesis pjfn.1
|- H e. CH
Assertion pjfni
|- ( projh ` H ) Fn ~H

Proof

Step Hyp Ref Expression
1 pjfn.1
 |-  H e. CH
2 riotaex
 |-  ( iota_ y e. H E. z e. ( _|_ ` H ) x = ( y +h z ) ) e. _V
3 pjhfval
 |-  ( H e. CH -> ( projh ` H ) = ( x e. ~H |-> ( iota_ y e. H E. z e. ( _|_ ` H ) x = ( y +h z ) ) ) )
4 1 3 ax-mp
 |-  ( projh ` H ) = ( x e. ~H |-> ( iota_ y e. H E. z e. ( _|_ ` H ) x = ( y +h z ) ) )
5 2 4 fnmpti
 |-  ( projh ` H ) Fn ~H