Description: A projection maps onto its subspace. (Contributed by NM, 24-Apr-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pjfn.1 | |- H e. CH |
|
| Assertion | pjfoi | |- ( projh ` H ) : ~H -onto-> H |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjfn.1 | |- H e. CH |
|
| 2 | 1 | pjfni | |- ( projh ` H ) Fn ~H |
| 3 | 1 | pjrni | |- ran ( projh ` H ) = H |
| 4 | df-fo | |- ( ( projh ` H ) : ~H -onto-> H <-> ( ( projh ` H ) Fn ~H /\ ran ( projh ` H ) = H ) ) |
|
| 5 | 2 3 4 | mpbir2an | |- ( projh ` H ) : ~H -onto-> H |