Step |
Hyp |
Ref |
Expression |
1 |
|
pjhth.1 |
|- H e. CH |
2 |
|
pjhth.2 |
|- ( ph -> A e. ~H ) |
3 |
|
pjhth.3 |
|- ( ph -> B e. H ) |
4 |
|
pjhth.4 |
|- ( ph -> C e. H ) |
5 |
|
pjhth.5 |
|- ( ph -> A. x e. H ( normh ` ( A -h B ) ) <_ ( normh ` ( A -h x ) ) ) |
6 |
|
pjhth.6 |
|- T = ( ( ( A -h B ) .ih C ) / ( ( C .ih C ) + 1 ) ) |
7 |
1
|
cheli |
|- ( B e. H -> B e. ~H ) |
8 |
3 7
|
syl |
|- ( ph -> B e. ~H ) |
9 |
|
hvsubcl |
|- ( ( A e. ~H /\ B e. ~H ) -> ( A -h B ) e. ~H ) |
10 |
2 8 9
|
syl2anc |
|- ( ph -> ( A -h B ) e. ~H ) |
11 |
1
|
cheli |
|- ( C e. H -> C e. ~H ) |
12 |
4 11
|
syl |
|- ( ph -> C e. ~H ) |
13 |
|
hicl |
|- ( ( ( A -h B ) e. ~H /\ C e. ~H ) -> ( ( A -h B ) .ih C ) e. CC ) |
14 |
10 12 13
|
syl2anc |
|- ( ph -> ( ( A -h B ) .ih C ) e. CC ) |
15 |
14
|
abscld |
|- ( ph -> ( abs ` ( ( A -h B ) .ih C ) ) e. RR ) |
16 |
15
|
recnd |
|- ( ph -> ( abs ` ( ( A -h B ) .ih C ) ) e. CC ) |
17 |
15
|
resqcld |
|- ( ph -> ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) e. RR ) |
18 |
17
|
renegcld |
|- ( ph -> -u ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) e. RR ) |
19 |
|
hiidrcl |
|- ( C e. ~H -> ( C .ih C ) e. RR ) |
20 |
12 19
|
syl |
|- ( ph -> ( C .ih C ) e. RR ) |
21 |
|
2re |
|- 2 e. RR |
22 |
|
readdcl |
|- ( ( ( C .ih C ) e. RR /\ 2 e. RR ) -> ( ( C .ih C ) + 2 ) e. RR ) |
23 |
20 21 22
|
sylancl |
|- ( ph -> ( ( C .ih C ) + 2 ) e. RR ) |
24 |
|
0red |
|- ( ph -> 0 e. RR ) |
25 |
|
peano2re |
|- ( ( C .ih C ) e. RR -> ( ( C .ih C ) + 1 ) e. RR ) |
26 |
20 25
|
syl |
|- ( ph -> ( ( C .ih C ) + 1 ) e. RR ) |
27 |
|
hiidge0 |
|- ( C e. ~H -> 0 <_ ( C .ih C ) ) |
28 |
12 27
|
syl |
|- ( ph -> 0 <_ ( C .ih C ) ) |
29 |
20
|
ltp1d |
|- ( ph -> ( C .ih C ) < ( ( C .ih C ) + 1 ) ) |
30 |
24 20 26 28 29
|
lelttrd |
|- ( ph -> 0 < ( ( C .ih C ) + 1 ) ) |
31 |
26
|
ltp1d |
|- ( ph -> ( ( C .ih C ) + 1 ) < ( ( ( C .ih C ) + 1 ) + 1 ) ) |
32 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
33 |
32
|
oveq2i |
|- ( ( C .ih C ) + 2 ) = ( ( C .ih C ) + ( 1 + 1 ) ) |
34 |
20
|
recnd |
|- ( ph -> ( C .ih C ) e. CC ) |
35 |
|
ax-1cn |
|- 1 e. CC |
36 |
|
addass |
|- ( ( ( C .ih C ) e. CC /\ 1 e. CC /\ 1 e. CC ) -> ( ( ( C .ih C ) + 1 ) + 1 ) = ( ( C .ih C ) + ( 1 + 1 ) ) ) |
37 |
35 35 36
|
mp3an23 |
|- ( ( C .ih C ) e. CC -> ( ( ( C .ih C ) + 1 ) + 1 ) = ( ( C .ih C ) + ( 1 + 1 ) ) ) |
38 |
34 37
|
syl |
|- ( ph -> ( ( ( C .ih C ) + 1 ) + 1 ) = ( ( C .ih C ) + ( 1 + 1 ) ) ) |
39 |
33 38
|
eqtr4id |
|- ( ph -> ( ( C .ih C ) + 2 ) = ( ( ( C .ih C ) + 1 ) + 1 ) ) |
40 |
31 39
|
breqtrrd |
|- ( ph -> ( ( C .ih C ) + 1 ) < ( ( C .ih C ) + 2 ) ) |
41 |
24 26 23 30 40
|
lttrd |
|- ( ph -> 0 < ( ( C .ih C ) + 2 ) ) |
42 |
23 41
|
elrpd |
|- ( ph -> ( ( C .ih C ) + 2 ) e. RR+ ) |
43 |
|
oveq2 |
|- ( x = ( B +h ( T .h C ) ) -> ( A -h x ) = ( A -h ( B +h ( T .h C ) ) ) ) |
44 |
43
|
fveq2d |
|- ( x = ( B +h ( T .h C ) ) -> ( normh ` ( A -h x ) ) = ( normh ` ( A -h ( B +h ( T .h C ) ) ) ) ) |
45 |
44
|
breq2d |
|- ( x = ( B +h ( T .h C ) ) -> ( ( normh ` ( A -h B ) ) <_ ( normh ` ( A -h x ) ) <-> ( normh ` ( A -h B ) ) <_ ( normh ` ( A -h ( B +h ( T .h C ) ) ) ) ) ) |
46 |
1
|
chshii |
|- H e. SH |
47 |
46
|
a1i |
|- ( ph -> H e. SH ) |
48 |
26
|
recnd |
|- ( ph -> ( ( C .ih C ) + 1 ) e. CC ) |
49 |
20 28
|
ge0p1rpd |
|- ( ph -> ( ( C .ih C ) + 1 ) e. RR+ ) |
50 |
49
|
rpne0d |
|- ( ph -> ( ( C .ih C ) + 1 ) =/= 0 ) |
51 |
14 48 50
|
divcld |
|- ( ph -> ( ( ( A -h B ) .ih C ) / ( ( C .ih C ) + 1 ) ) e. CC ) |
52 |
6 51
|
eqeltrid |
|- ( ph -> T e. CC ) |
53 |
|
shmulcl |
|- ( ( H e. SH /\ T e. CC /\ C e. H ) -> ( T .h C ) e. H ) |
54 |
47 52 4 53
|
syl3anc |
|- ( ph -> ( T .h C ) e. H ) |
55 |
|
shaddcl |
|- ( ( H e. SH /\ B e. H /\ ( T .h C ) e. H ) -> ( B +h ( T .h C ) ) e. H ) |
56 |
47 3 54 55
|
syl3anc |
|- ( ph -> ( B +h ( T .h C ) ) e. H ) |
57 |
45 5 56
|
rspcdva |
|- ( ph -> ( normh ` ( A -h B ) ) <_ ( normh ` ( A -h ( B +h ( T .h C ) ) ) ) ) |
58 |
1
|
cheli |
|- ( ( T .h C ) e. H -> ( T .h C ) e. ~H ) |
59 |
54 58
|
syl |
|- ( ph -> ( T .h C ) e. ~H ) |
60 |
|
hvsubass |
|- ( ( A e. ~H /\ B e. ~H /\ ( T .h C ) e. ~H ) -> ( ( A -h B ) -h ( T .h C ) ) = ( A -h ( B +h ( T .h C ) ) ) ) |
61 |
2 8 59 60
|
syl3anc |
|- ( ph -> ( ( A -h B ) -h ( T .h C ) ) = ( A -h ( B +h ( T .h C ) ) ) ) |
62 |
61
|
fveq2d |
|- ( ph -> ( normh ` ( ( A -h B ) -h ( T .h C ) ) ) = ( normh ` ( A -h ( B +h ( T .h C ) ) ) ) ) |
63 |
57 62
|
breqtrrd |
|- ( ph -> ( normh ` ( A -h B ) ) <_ ( normh ` ( ( A -h B ) -h ( T .h C ) ) ) ) |
64 |
|
normcl |
|- ( ( A -h B ) e. ~H -> ( normh ` ( A -h B ) ) e. RR ) |
65 |
10 64
|
syl |
|- ( ph -> ( normh ` ( A -h B ) ) e. RR ) |
66 |
|
hvsubcl |
|- ( ( ( A -h B ) e. ~H /\ ( T .h C ) e. ~H ) -> ( ( A -h B ) -h ( T .h C ) ) e. ~H ) |
67 |
10 59 66
|
syl2anc |
|- ( ph -> ( ( A -h B ) -h ( T .h C ) ) e. ~H ) |
68 |
|
normcl |
|- ( ( ( A -h B ) -h ( T .h C ) ) e. ~H -> ( normh ` ( ( A -h B ) -h ( T .h C ) ) ) e. RR ) |
69 |
67 68
|
syl |
|- ( ph -> ( normh ` ( ( A -h B ) -h ( T .h C ) ) ) e. RR ) |
70 |
|
normge0 |
|- ( ( A -h B ) e. ~H -> 0 <_ ( normh ` ( A -h B ) ) ) |
71 |
10 70
|
syl |
|- ( ph -> 0 <_ ( normh ` ( A -h B ) ) ) |
72 |
24 65 69 71 63
|
letrd |
|- ( ph -> 0 <_ ( normh ` ( ( A -h B ) -h ( T .h C ) ) ) ) |
73 |
65 69 71 72
|
le2sqd |
|- ( ph -> ( ( normh ` ( A -h B ) ) <_ ( normh ` ( ( A -h B ) -h ( T .h C ) ) ) <-> ( ( normh ` ( A -h B ) ) ^ 2 ) <_ ( ( normh ` ( ( A -h B ) -h ( T .h C ) ) ) ^ 2 ) ) ) |
74 |
63 73
|
mpbid |
|- ( ph -> ( ( normh ` ( A -h B ) ) ^ 2 ) <_ ( ( normh ` ( ( A -h B ) -h ( T .h C ) ) ) ^ 2 ) ) |
75 |
69
|
resqcld |
|- ( ph -> ( ( normh ` ( ( A -h B ) -h ( T .h C ) ) ) ^ 2 ) e. RR ) |
76 |
65
|
resqcld |
|- ( ph -> ( ( normh ` ( A -h B ) ) ^ 2 ) e. RR ) |
77 |
75 76
|
subge0d |
|- ( ph -> ( 0 <_ ( ( ( normh ` ( ( A -h B ) -h ( T .h C ) ) ) ^ 2 ) - ( ( normh ` ( A -h B ) ) ^ 2 ) ) <-> ( ( normh ` ( A -h B ) ) ^ 2 ) <_ ( ( normh ` ( ( A -h B ) -h ( T .h C ) ) ) ^ 2 ) ) ) |
78 |
74 77
|
mpbird |
|- ( ph -> 0 <_ ( ( ( normh ` ( ( A -h B ) -h ( T .h C ) ) ) ^ 2 ) - ( ( normh ` ( A -h B ) ) ^ 2 ) ) ) |
79 |
|
2z |
|- 2 e. ZZ |
80 |
|
rpexpcl |
|- ( ( ( ( C .ih C ) + 1 ) e. RR+ /\ 2 e. ZZ ) -> ( ( ( C .ih C ) + 1 ) ^ 2 ) e. RR+ ) |
81 |
49 79 80
|
sylancl |
|- ( ph -> ( ( ( C .ih C ) + 1 ) ^ 2 ) e. RR+ ) |
82 |
17 81
|
rerpdivcld |
|- ( ph -> ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) e. RR ) |
83 |
82 23
|
remulcld |
|- ( ph -> ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 2 ) ) e. RR ) |
84 |
83
|
recnd |
|- ( ph -> ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 2 ) ) e. CC ) |
85 |
84
|
negcld |
|- ( ph -> -u ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 2 ) ) e. CC ) |
86 |
|
hicl |
|- ( ( ( A -h B ) e. ~H /\ ( A -h B ) e. ~H ) -> ( ( A -h B ) .ih ( A -h B ) ) e. CC ) |
87 |
10 10 86
|
syl2anc |
|- ( ph -> ( ( A -h B ) .ih ( A -h B ) ) e. CC ) |
88 |
85 87
|
pncand |
|- ( ph -> ( ( -u ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 2 ) ) + ( ( A -h B ) .ih ( A -h B ) ) ) - ( ( A -h B ) .ih ( A -h B ) ) ) = -u ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 2 ) ) ) |
89 |
|
normsq |
|- ( ( ( A -h B ) -h ( T .h C ) ) e. ~H -> ( ( normh ` ( ( A -h B ) -h ( T .h C ) ) ) ^ 2 ) = ( ( ( A -h B ) -h ( T .h C ) ) .ih ( ( A -h B ) -h ( T .h C ) ) ) ) |
90 |
67 89
|
syl |
|- ( ph -> ( ( normh ` ( ( A -h B ) -h ( T .h C ) ) ) ^ 2 ) = ( ( ( A -h B ) -h ( T .h C ) ) .ih ( ( A -h B ) -h ( T .h C ) ) ) ) |
91 |
|
his2sub |
|- ( ( ( A -h B ) e. ~H /\ ( T .h C ) e. ~H /\ ( ( A -h B ) -h ( T .h C ) ) e. ~H ) -> ( ( ( A -h B ) -h ( T .h C ) ) .ih ( ( A -h B ) -h ( T .h C ) ) ) = ( ( ( A -h B ) .ih ( ( A -h B ) -h ( T .h C ) ) ) - ( ( T .h C ) .ih ( ( A -h B ) -h ( T .h C ) ) ) ) ) |
92 |
10 59 67 91
|
syl3anc |
|- ( ph -> ( ( ( A -h B ) -h ( T .h C ) ) .ih ( ( A -h B ) -h ( T .h C ) ) ) = ( ( ( A -h B ) .ih ( ( A -h B ) -h ( T .h C ) ) ) - ( ( T .h C ) .ih ( ( A -h B ) -h ( T .h C ) ) ) ) ) |
93 |
|
his2sub2 |
|- ( ( ( A -h B ) e. ~H /\ ( A -h B ) e. ~H /\ ( T .h C ) e. ~H ) -> ( ( A -h B ) .ih ( ( A -h B ) -h ( T .h C ) ) ) = ( ( ( A -h B ) .ih ( A -h B ) ) - ( ( A -h B ) .ih ( T .h C ) ) ) ) |
94 |
10 10 59 93
|
syl3anc |
|- ( ph -> ( ( A -h B ) .ih ( ( A -h B ) -h ( T .h C ) ) ) = ( ( ( A -h B ) .ih ( A -h B ) ) - ( ( A -h B ) .ih ( T .h C ) ) ) ) |
95 |
94
|
oveq1d |
|- ( ph -> ( ( ( A -h B ) .ih ( ( A -h B ) -h ( T .h C ) ) ) - ( ( T .h C ) .ih ( ( A -h B ) -h ( T .h C ) ) ) ) = ( ( ( ( A -h B ) .ih ( A -h B ) ) - ( ( A -h B ) .ih ( T .h C ) ) ) - ( ( T .h C ) .ih ( ( A -h B ) -h ( T .h C ) ) ) ) ) |
96 |
|
hicl |
|- ( ( ( A -h B ) e. ~H /\ ( T .h C ) e. ~H ) -> ( ( A -h B ) .ih ( T .h C ) ) e. CC ) |
97 |
10 59 96
|
syl2anc |
|- ( ph -> ( ( A -h B ) .ih ( T .h C ) ) e. CC ) |
98 |
|
his2sub2 |
|- ( ( ( T .h C ) e. ~H /\ ( A -h B ) e. ~H /\ ( T .h C ) e. ~H ) -> ( ( T .h C ) .ih ( ( A -h B ) -h ( T .h C ) ) ) = ( ( ( T .h C ) .ih ( A -h B ) ) - ( ( T .h C ) .ih ( T .h C ) ) ) ) |
99 |
59 10 59 98
|
syl3anc |
|- ( ph -> ( ( T .h C ) .ih ( ( A -h B ) -h ( T .h C ) ) ) = ( ( ( T .h C ) .ih ( A -h B ) ) - ( ( T .h C ) .ih ( T .h C ) ) ) ) |
100 |
|
hicl |
|- ( ( ( T .h C ) e. ~H /\ ( A -h B ) e. ~H ) -> ( ( T .h C ) .ih ( A -h B ) ) e. CC ) |
101 |
59 10 100
|
syl2anc |
|- ( ph -> ( ( T .h C ) .ih ( A -h B ) ) e. CC ) |
102 |
|
hicl |
|- ( ( ( T .h C ) e. ~H /\ ( T .h C ) e. ~H ) -> ( ( T .h C ) .ih ( T .h C ) ) e. CC ) |
103 |
59 59 102
|
syl2anc |
|- ( ph -> ( ( T .h C ) .ih ( T .h C ) ) e. CC ) |
104 |
101 103
|
subcld |
|- ( ph -> ( ( ( T .h C ) .ih ( A -h B ) ) - ( ( T .h C ) .ih ( T .h C ) ) ) e. CC ) |
105 |
99 104
|
eqeltrd |
|- ( ph -> ( ( T .h C ) .ih ( ( A -h B ) -h ( T .h C ) ) ) e. CC ) |
106 |
87 97 105
|
subsub4d |
|- ( ph -> ( ( ( ( A -h B ) .ih ( A -h B ) ) - ( ( A -h B ) .ih ( T .h C ) ) ) - ( ( T .h C ) .ih ( ( A -h B ) -h ( T .h C ) ) ) ) = ( ( ( A -h B ) .ih ( A -h B ) ) - ( ( ( A -h B ) .ih ( T .h C ) ) + ( ( T .h C ) .ih ( ( A -h B ) -h ( T .h C ) ) ) ) ) ) |
107 |
82
|
recnd |
|- ( ph -> ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) e. CC ) |
108 |
35
|
a1i |
|- ( ph -> 1 e. CC ) |
109 |
107 48 108
|
adddid |
|- ( ph -> ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( ( C .ih C ) + 1 ) + 1 ) ) = ( ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 1 ) ) + ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. 1 ) ) ) |
110 |
39
|
oveq2d |
|- ( ph -> ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 2 ) ) = ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( ( C .ih C ) + 1 ) + 1 ) ) ) |
111 |
|
his5 |
|- ( ( T e. CC /\ ( A -h B ) e. ~H /\ C e. ~H ) -> ( ( A -h B ) .ih ( T .h C ) ) = ( ( * ` T ) x. ( ( A -h B ) .ih C ) ) ) |
112 |
52 10 12 111
|
syl3anc |
|- ( ph -> ( ( A -h B ) .ih ( T .h C ) ) = ( ( * ` T ) x. ( ( A -h B ) .ih C ) ) ) |
113 |
52
|
cjcld |
|- ( ph -> ( * ` T ) e. CC ) |
114 |
113 14
|
mulcomd |
|- ( ph -> ( ( * ` T ) x. ( ( A -h B ) .ih C ) ) = ( ( ( A -h B ) .ih C ) x. ( * ` T ) ) ) |
115 |
14
|
cjcld |
|- ( ph -> ( * ` ( ( A -h B ) .ih C ) ) e. CC ) |
116 |
14 115 48 50
|
divassd |
|- ( ph -> ( ( ( ( A -h B ) .ih C ) x. ( * ` ( ( A -h B ) .ih C ) ) ) / ( ( C .ih C ) + 1 ) ) = ( ( ( A -h B ) .ih C ) x. ( ( * ` ( ( A -h B ) .ih C ) ) / ( ( C .ih C ) + 1 ) ) ) ) |
117 |
14
|
absvalsqd |
|- ( ph -> ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) = ( ( ( A -h B ) .ih C ) x. ( * ` ( ( A -h B ) .ih C ) ) ) ) |
118 |
117
|
oveq1d |
|- ( ph -> ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( C .ih C ) + 1 ) ) = ( ( ( ( A -h B ) .ih C ) x. ( * ` ( ( A -h B ) .ih C ) ) ) / ( ( C .ih C ) + 1 ) ) ) |
119 |
6
|
fveq2i |
|- ( * ` T ) = ( * ` ( ( ( A -h B ) .ih C ) / ( ( C .ih C ) + 1 ) ) ) |
120 |
14 48 50
|
cjdivd |
|- ( ph -> ( * ` ( ( ( A -h B ) .ih C ) / ( ( C .ih C ) + 1 ) ) ) = ( ( * ` ( ( A -h B ) .ih C ) ) / ( * ` ( ( C .ih C ) + 1 ) ) ) ) |
121 |
26
|
cjred |
|- ( ph -> ( * ` ( ( C .ih C ) + 1 ) ) = ( ( C .ih C ) + 1 ) ) |
122 |
121
|
oveq2d |
|- ( ph -> ( ( * ` ( ( A -h B ) .ih C ) ) / ( * ` ( ( C .ih C ) + 1 ) ) ) = ( ( * ` ( ( A -h B ) .ih C ) ) / ( ( C .ih C ) + 1 ) ) ) |
123 |
120 122
|
eqtrd |
|- ( ph -> ( * ` ( ( ( A -h B ) .ih C ) / ( ( C .ih C ) + 1 ) ) ) = ( ( * ` ( ( A -h B ) .ih C ) ) / ( ( C .ih C ) + 1 ) ) ) |
124 |
119 123
|
syl5eq |
|- ( ph -> ( * ` T ) = ( ( * ` ( ( A -h B ) .ih C ) ) / ( ( C .ih C ) + 1 ) ) ) |
125 |
124
|
oveq2d |
|- ( ph -> ( ( ( A -h B ) .ih C ) x. ( * ` T ) ) = ( ( ( A -h B ) .ih C ) x. ( ( * ` ( ( A -h B ) .ih C ) ) / ( ( C .ih C ) + 1 ) ) ) ) |
126 |
116 118 125
|
3eqtr4rd |
|- ( ph -> ( ( ( A -h B ) .ih C ) x. ( * ` T ) ) = ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( C .ih C ) + 1 ) ) ) |
127 |
112 114 126
|
3eqtrd |
|- ( ph -> ( ( A -h B ) .ih ( T .h C ) ) = ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( C .ih C ) + 1 ) ) ) |
128 |
17
|
recnd |
|- ( ph -> ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) e. CC ) |
129 |
128 48
|
mulcomd |
|- ( ph -> ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) x. ( ( C .ih C ) + 1 ) ) = ( ( ( C .ih C ) + 1 ) x. ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) ) ) |
130 |
48
|
sqvald |
|- ( ph -> ( ( ( C .ih C ) + 1 ) ^ 2 ) = ( ( ( C .ih C ) + 1 ) x. ( ( C .ih C ) + 1 ) ) ) |
131 |
129 130
|
oveq12d |
|- ( ph -> ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) x. ( ( C .ih C ) + 1 ) ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) = ( ( ( ( C .ih C ) + 1 ) x. ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) ) / ( ( ( C .ih C ) + 1 ) x. ( ( C .ih C ) + 1 ) ) ) ) |
132 |
128 48 48 50 50
|
divcan5d |
|- ( ph -> ( ( ( ( C .ih C ) + 1 ) x. ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) ) / ( ( ( C .ih C ) + 1 ) x. ( ( C .ih C ) + 1 ) ) ) = ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( C .ih C ) + 1 ) ) ) |
133 |
131 132
|
eqtr2d |
|- ( ph -> ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( C .ih C ) + 1 ) ) = ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) x. ( ( C .ih C ) + 1 ) ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) ) |
134 |
26
|
resqcld |
|- ( ph -> ( ( ( C .ih C ) + 1 ) ^ 2 ) e. RR ) |
135 |
134
|
recnd |
|- ( ph -> ( ( ( C .ih C ) + 1 ) ^ 2 ) e. CC ) |
136 |
81
|
rpne0d |
|- ( ph -> ( ( ( C .ih C ) + 1 ) ^ 2 ) =/= 0 ) |
137 |
128 48 135 136
|
div23d |
|- ( ph -> ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) x. ( ( C .ih C ) + 1 ) ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) = ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 1 ) ) ) |
138 |
127 133 137
|
3eqtrd |
|- ( ph -> ( ( A -h B ) .ih ( T .h C ) ) = ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 1 ) ) ) |
139 |
82 26
|
remulcld |
|- ( ph -> ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 1 ) ) e. RR ) |
140 |
138 139
|
eqeltrd |
|- ( ph -> ( ( A -h B ) .ih ( T .h C ) ) e. RR ) |
141 |
|
hire |
|- ( ( ( A -h B ) e. ~H /\ ( T .h C ) e. ~H ) -> ( ( ( A -h B ) .ih ( T .h C ) ) e. RR <-> ( ( A -h B ) .ih ( T .h C ) ) = ( ( T .h C ) .ih ( A -h B ) ) ) ) |
142 |
10 59 141
|
syl2anc |
|- ( ph -> ( ( ( A -h B ) .ih ( T .h C ) ) e. RR <-> ( ( A -h B ) .ih ( T .h C ) ) = ( ( T .h C ) .ih ( A -h B ) ) ) ) |
143 |
140 142
|
mpbid |
|- ( ph -> ( ( A -h B ) .ih ( T .h C ) ) = ( ( T .h C ) .ih ( A -h B ) ) ) |
144 |
143 138
|
eqtr3d |
|- ( ph -> ( ( T .h C ) .ih ( A -h B ) ) = ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 1 ) ) ) |
145 |
|
his35 |
|- ( ( ( T e. CC /\ T e. CC ) /\ ( C e. ~H /\ C e. ~H ) ) -> ( ( T .h C ) .ih ( T .h C ) ) = ( ( T x. ( * ` T ) ) x. ( C .ih C ) ) ) |
146 |
52 52 12 12 145
|
syl22anc |
|- ( ph -> ( ( T .h C ) .ih ( T .h C ) ) = ( ( T x. ( * ` T ) ) x. ( C .ih C ) ) ) |
147 |
6
|
fveq2i |
|- ( abs ` T ) = ( abs ` ( ( ( A -h B ) .ih C ) / ( ( C .ih C ) + 1 ) ) ) |
148 |
14 48 50
|
absdivd |
|- ( ph -> ( abs ` ( ( ( A -h B ) .ih C ) / ( ( C .ih C ) + 1 ) ) ) = ( ( abs ` ( ( A -h B ) .ih C ) ) / ( abs ` ( ( C .ih C ) + 1 ) ) ) ) |
149 |
49
|
rpge0d |
|- ( ph -> 0 <_ ( ( C .ih C ) + 1 ) ) |
150 |
26 149
|
absidd |
|- ( ph -> ( abs ` ( ( C .ih C ) + 1 ) ) = ( ( C .ih C ) + 1 ) ) |
151 |
150
|
oveq2d |
|- ( ph -> ( ( abs ` ( ( A -h B ) .ih C ) ) / ( abs ` ( ( C .ih C ) + 1 ) ) ) = ( ( abs ` ( ( A -h B ) .ih C ) ) / ( ( C .ih C ) + 1 ) ) ) |
152 |
148 151
|
eqtrd |
|- ( ph -> ( abs ` ( ( ( A -h B ) .ih C ) / ( ( C .ih C ) + 1 ) ) ) = ( ( abs ` ( ( A -h B ) .ih C ) ) / ( ( C .ih C ) + 1 ) ) ) |
153 |
147 152
|
syl5eq |
|- ( ph -> ( abs ` T ) = ( ( abs ` ( ( A -h B ) .ih C ) ) / ( ( C .ih C ) + 1 ) ) ) |
154 |
153
|
oveq1d |
|- ( ph -> ( ( abs ` T ) ^ 2 ) = ( ( ( abs ` ( ( A -h B ) .ih C ) ) / ( ( C .ih C ) + 1 ) ) ^ 2 ) ) |
155 |
52
|
absvalsqd |
|- ( ph -> ( ( abs ` T ) ^ 2 ) = ( T x. ( * ` T ) ) ) |
156 |
16 48 50
|
sqdivd |
|- ( ph -> ( ( ( abs ` ( ( A -h B ) .ih C ) ) / ( ( C .ih C ) + 1 ) ) ^ 2 ) = ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) ) |
157 |
154 155 156
|
3eqtr3d |
|- ( ph -> ( T x. ( * ` T ) ) = ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) ) |
158 |
157
|
oveq1d |
|- ( ph -> ( ( T x. ( * ` T ) ) x. ( C .ih C ) ) = ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( C .ih C ) ) ) |
159 |
146 158
|
eqtrd |
|- ( ph -> ( ( T .h C ) .ih ( T .h C ) ) = ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( C .ih C ) ) ) |
160 |
144 159
|
oveq12d |
|- ( ph -> ( ( ( T .h C ) .ih ( A -h B ) ) - ( ( T .h C ) .ih ( T .h C ) ) ) = ( ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 1 ) ) - ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( C .ih C ) ) ) ) |
161 |
|
pncan2 |
|- ( ( ( C .ih C ) e. CC /\ 1 e. CC ) -> ( ( ( C .ih C ) + 1 ) - ( C .ih C ) ) = 1 ) |
162 |
34 35 161
|
sylancl |
|- ( ph -> ( ( ( C .ih C ) + 1 ) - ( C .ih C ) ) = 1 ) |
163 |
162
|
oveq2d |
|- ( ph -> ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( ( C .ih C ) + 1 ) - ( C .ih C ) ) ) = ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. 1 ) ) |
164 |
107 48 34
|
subdid |
|- ( ph -> ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( ( C .ih C ) + 1 ) - ( C .ih C ) ) ) = ( ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 1 ) ) - ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( C .ih C ) ) ) ) |
165 |
163 164
|
eqtr3d |
|- ( ph -> ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. 1 ) = ( ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 1 ) ) - ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( C .ih C ) ) ) ) |
166 |
160 99 165
|
3eqtr4d |
|- ( ph -> ( ( T .h C ) .ih ( ( A -h B ) -h ( T .h C ) ) ) = ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. 1 ) ) |
167 |
138 166
|
oveq12d |
|- ( ph -> ( ( ( A -h B ) .ih ( T .h C ) ) + ( ( T .h C ) .ih ( ( A -h B ) -h ( T .h C ) ) ) ) = ( ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 1 ) ) + ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. 1 ) ) ) |
168 |
109 110 167
|
3eqtr4rd |
|- ( ph -> ( ( ( A -h B ) .ih ( T .h C ) ) + ( ( T .h C ) .ih ( ( A -h B ) -h ( T .h C ) ) ) ) = ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 2 ) ) ) |
169 |
168
|
oveq2d |
|- ( ph -> ( ( ( A -h B ) .ih ( A -h B ) ) - ( ( ( A -h B ) .ih ( T .h C ) ) + ( ( T .h C ) .ih ( ( A -h B ) -h ( T .h C ) ) ) ) ) = ( ( ( A -h B ) .ih ( A -h B ) ) - ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 2 ) ) ) ) |
170 |
95 106 169
|
3eqtrd |
|- ( ph -> ( ( ( A -h B ) .ih ( ( A -h B ) -h ( T .h C ) ) ) - ( ( T .h C ) .ih ( ( A -h B ) -h ( T .h C ) ) ) ) = ( ( ( A -h B ) .ih ( A -h B ) ) - ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 2 ) ) ) ) |
171 |
90 92 170
|
3eqtrd |
|- ( ph -> ( ( normh ` ( ( A -h B ) -h ( T .h C ) ) ) ^ 2 ) = ( ( ( A -h B ) .ih ( A -h B ) ) - ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 2 ) ) ) ) |
172 |
87 84
|
negsubd |
|- ( ph -> ( ( ( A -h B ) .ih ( A -h B ) ) + -u ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 2 ) ) ) = ( ( ( A -h B ) .ih ( A -h B ) ) - ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 2 ) ) ) ) |
173 |
87 85
|
addcomd |
|- ( ph -> ( ( ( A -h B ) .ih ( A -h B ) ) + -u ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 2 ) ) ) = ( -u ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 2 ) ) + ( ( A -h B ) .ih ( A -h B ) ) ) ) |
174 |
171 172 173
|
3eqtr2d |
|- ( ph -> ( ( normh ` ( ( A -h B ) -h ( T .h C ) ) ) ^ 2 ) = ( -u ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 2 ) ) + ( ( A -h B ) .ih ( A -h B ) ) ) ) |
175 |
|
normsq |
|- ( ( A -h B ) e. ~H -> ( ( normh ` ( A -h B ) ) ^ 2 ) = ( ( A -h B ) .ih ( A -h B ) ) ) |
176 |
10 175
|
syl |
|- ( ph -> ( ( normh ` ( A -h B ) ) ^ 2 ) = ( ( A -h B ) .ih ( A -h B ) ) ) |
177 |
174 176
|
oveq12d |
|- ( ph -> ( ( ( normh ` ( ( A -h B ) -h ( T .h C ) ) ) ^ 2 ) - ( ( normh ` ( A -h B ) ) ^ 2 ) ) = ( ( -u ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 2 ) ) + ( ( A -h B ) .ih ( A -h B ) ) ) - ( ( A -h B ) .ih ( A -h B ) ) ) ) |
178 |
23
|
renegcld |
|- ( ph -> -u ( ( C .ih C ) + 2 ) e. RR ) |
179 |
178
|
recnd |
|- ( ph -> -u ( ( C .ih C ) + 2 ) e. CC ) |
180 |
128 179 135 136
|
div23d |
|- ( ph -> ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) x. -u ( ( C .ih C ) + 2 ) ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) = ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. -u ( ( C .ih C ) + 2 ) ) ) |
181 |
23
|
recnd |
|- ( ph -> ( ( C .ih C ) + 2 ) e. CC ) |
182 |
107 181
|
mulneg2d |
|- ( ph -> ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. -u ( ( C .ih C ) + 2 ) ) = -u ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 2 ) ) ) |
183 |
180 182
|
eqtrd |
|- ( ph -> ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) x. -u ( ( C .ih C ) + 2 ) ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) = -u ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 2 ) ) ) |
184 |
88 177 183
|
3eqtr4rd |
|- ( ph -> ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) x. -u ( ( C .ih C ) + 2 ) ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) = ( ( ( normh ` ( ( A -h B ) -h ( T .h C ) ) ) ^ 2 ) - ( ( normh ` ( A -h B ) ) ^ 2 ) ) ) |
185 |
78 184
|
breqtrrd |
|- ( ph -> 0 <_ ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) x. -u ( ( C .ih C ) + 2 ) ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) ) |
186 |
17 178
|
remulcld |
|- ( ph -> ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) x. -u ( ( C .ih C ) + 2 ) ) e. RR ) |
187 |
186 81
|
ge0divd |
|- ( ph -> ( 0 <_ ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) x. -u ( ( C .ih C ) + 2 ) ) <-> 0 <_ ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) x. -u ( ( C .ih C ) + 2 ) ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) ) ) |
188 |
185 187
|
mpbird |
|- ( ph -> 0 <_ ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) x. -u ( ( C .ih C ) + 2 ) ) ) |
189 |
|
mulneg12 |
|- ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) e. CC /\ ( ( C .ih C ) + 2 ) e. CC ) -> ( -u ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) x. ( ( C .ih C ) + 2 ) ) = ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) x. -u ( ( C .ih C ) + 2 ) ) ) |
190 |
128 181 189
|
syl2anc |
|- ( ph -> ( -u ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) x. ( ( C .ih C ) + 2 ) ) = ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) x. -u ( ( C .ih C ) + 2 ) ) ) |
191 |
188 190
|
breqtrrd |
|- ( ph -> 0 <_ ( -u ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) x. ( ( C .ih C ) + 2 ) ) ) |
192 |
18 42 191
|
prodge0ld |
|- ( ph -> 0 <_ -u ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) ) |
193 |
17
|
le0neg1d |
|- ( ph -> ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) <_ 0 <-> 0 <_ -u ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) ) ) |
194 |
192 193
|
mpbird |
|- ( ph -> ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) <_ 0 ) |
195 |
15
|
sqge0d |
|- ( ph -> 0 <_ ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) ) |
196 |
|
0re |
|- 0 e. RR |
197 |
|
letri3 |
|- ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) e. RR /\ 0 e. RR ) -> ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) = 0 <-> ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) <_ 0 /\ 0 <_ ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) ) ) ) |
198 |
17 196 197
|
sylancl |
|- ( ph -> ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) = 0 <-> ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) <_ 0 /\ 0 <_ ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) ) ) ) |
199 |
194 195 198
|
mpbir2and |
|- ( ph -> ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) = 0 ) |
200 |
16 199
|
sqeq0d |
|- ( ph -> ( abs ` ( ( A -h B ) .ih C ) ) = 0 ) |
201 |
14 200
|
abs00d |
|- ( ph -> ( ( A -h B ) .ih C ) = 0 ) |