| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pjhth.1 |  |-  H e. CH | 
						
							| 2 |  | pjhth.2 |  |-  ( ph -> A e. ~H ) | 
						
							| 3 |  | pjhth.3 |  |-  ( ph -> B e. H ) | 
						
							| 4 |  | pjhth.4 |  |-  ( ph -> C e. H ) | 
						
							| 5 |  | pjhth.5 |  |-  ( ph -> A. x e. H ( normh ` ( A -h B ) ) <_ ( normh ` ( A -h x ) ) ) | 
						
							| 6 |  | pjhth.6 |  |-  T = ( ( ( A -h B ) .ih C ) / ( ( C .ih C ) + 1 ) ) | 
						
							| 7 | 1 | cheli |  |-  ( B e. H -> B e. ~H ) | 
						
							| 8 | 3 7 | syl |  |-  ( ph -> B e. ~H ) | 
						
							| 9 |  | hvsubcl |  |-  ( ( A e. ~H /\ B e. ~H ) -> ( A -h B ) e. ~H ) | 
						
							| 10 | 2 8 9 | syl2anc |  |-  ( ph -> ( A -h B ) e. ~H ) | 
						
							| 11 | 1 | cheli |  |-  ( C e. H -> C e. ~H ) | 
						
							| 12 | 4 11 | syl |  |-  ( ph -> C e. ~H ) | 
						
							| 13 |  | hicl |  |-  ( ( ( A -h B ) e. ~H /\ C e. ~H ) -> ( ( A -h B ) .ih C ) e. CC ) | 
						
							| 14 | 10 12 13 | syl2anc |  |-  ( ph -> ( ( A -h B ) .ih C ) e. CC ) | 
						
							| 15 | 14 | abscld |  |-  ( ph -> ( abs ` ( ( A -h B ) .ih C ) ) e. RR ) | 
						
							| 16 | 15 | recnd |  |-  ( ph -> ( abs ` ( ( A -h B ) .ih C ) ) e. CC ) | 
						
							| 17 | 15 | resqcld |  |-  ( ph -> ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) e. RR ) | 
						
							| 18 | 17 | renegcld |  |-  ( ph -> -u ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) e. RR ) | 
						
							| 19 |  | hiidrcl |  |-  ( C e. ~H -> ( C .ih C ) e. RR ) | 
						
							| 20 | 12 19 | syl |  |-  ( ph -> ( C .ih C ) e. RR ) | 
						
							| 21 |  | 2re |  |-  2 e. RR | 
						
							| 22 |  | readdcl |  |-  ( ( ( C .ih C ) e. RR /\ 2 e. RR ) -> ( ( C .ih C ) + 2 ) e. RR ) | 
						
							| 23 | 20 21 22 | sylancl |  |-  ( ph -> ( ( C .ih C ) + 2 ) e. RR ) | 
						
							| 24 |  | 0red |  |-  ( ph -> 0 e. RR ) | 
						
							| 25 |  | peano2re |  |-  ( ( C .ih C ) e. RR -> ( ( C .ih C ) + 1 ) e. RR ) | 
						
							| 26 | 20 25 | syl |  |-  ( ph -> ( ( C .ih C ) + 1 ) e. RR ) | 
						
							| 27 |  | hiidge0 |  |-  ( C e. ~H -> 0 <_ ( C .ih C ) ) | 
						
							| 28 | 12 27 | syl |  |-  ( ph -> 0 <_ ( C .ih C ) ) | 
						
							| 29 | 20 | ltp1d |  |-  ( ph -> ( C .ih C ) < ( ( C .ih C ) + 1 ) ) | 
						
							| 30 | 24 20 26 28 29 | lelttrd |  |-  ( ph -> 0 < ( ( C .ih C ) + 1 ) ) | 
						
							| 31 | 26 | ltp1d |  |-  ( ph -> ( ( C .ih C ) + 1 ) < ( ( ( C .ih C ) + 1 ) + 1 ) ) | 
						
							| 32 |  | df-2 |  |-  2 = ( 1 + 1 ) | 
						
							| 33 | 32 | oveq2i |  |-  ( ( C .ih C ) + 2 ) = ( ( C .ih C ) + ( 1 + 1 ) ) | 
						
							| 34 | 20 | recnd |  |-  ( ph -> ( C .ih C ) e. CC ) | 
						
							| 35 |  | ax-1cn |  |-  1 e. CC | 
						
							| 36 |  | addass |  |-  ( ( ( C .ih C ) e. CC /\ 1 e. CC /\ 1 e. CC ) -> ( ( ( C .ih C ) + 1 ) + 1 ) = ( ( C .ih C ) + ( 1 + 1 ) ) ) | 
						
							| 37 | 35 35 36 | mp3an23 |  |-  ( ( C .ih C ) e. CC -> ( ( ( C .ih C ) + 1 ) + 1 ) = ( ( C .ih C ) + ( 1 + 1 ) ) ) | 
						
							| 38 | 34 37 | syl |  |-  ( ph -> ( ( ( C .ih C ) + 1 ) + 1 ) = ( ( C .ih C ) + ( 1 + 1 ) ) ) | 
						
							| 39 | 33 38 | eqtr4id |  |-  ( ph -> ( ( C .ih C ) + 2 ) = ( ( ( C .ih C ) + 1 ) + 1 ) ) | 
						
							| 40 | 31 39 | breqtrrd |  |-  ( ph -> ( ( C .ih C ) + 1 ) < ( ( C .ih C ) + 2 ) ) | 
						
							| 41 | 24 26 23 30 40 | lttrd |  |-  ( ph -> 0 < ( ( C .ih C ) + 2 ) ) | 
						
							| 42 | 23 41 | elrpd |  |-  ( ph -> ( ( C .ih C ) + 2 ) e. RR+ ) | 
						
							| 43 |  | oveq2 |  |-  ( x = ( B +h ( T .h C ) ) -> ( A -h x ) = ( A -h ( B +h ( T .h C ) ) ) ) | 
						
							| 44 | 43 | fveq2d |  |-  ( x = ( B +h ( T .h C ) ) -> ( normh ` ( A -h x ) ) = ( normh ` ( A -h ( B +h ( T .h C ) ) ) ) ) | 
						
							| 45 | 44 | breq2d |  |-  ( x = ( B +h ( T .h C ) ) -> ( ( normh ` ( A -h B ) ) <_ ( normh ` ( A -h x ) ) <-> ( normh ` ( A -h B ) ) <_ ( normh ` ( A -h ( B +h ( T .h C ) ) ) ) ) ) | 
						
							| 46 | 1 | chshii |  |-  H e. SH | 
						
							| 47 | 46 | a1i |  |-  ( ph -> H e. SH ) | 
						
							| 48 | 26 | recnd |  |-  ( ph -> ( ( C .ih C ) + 1 ) e. CC ) | 
						
							| 49 | 20 28 | ge0p1rpd |  |-  ( ph -> ( ( C .ih C ) + 1 ) e. RR+ ) | 
						
							| 50 | 49 | rpne0d |  |-  ( ph -> ( ( C .ih C ) + 1 ) =/= 0 ) | 
						
							| 51 | 14 48 50 | divcld |  |-  ( ph -> ( ( ( A -h B ) .ih C ) / ( ( C .ih C ) + 1 ) ) e. CC ) | 
						
							| 52 | 6 51 | eqeltrid |  |-  ( ph -> T e. CC ) | 
						
							| 53 |  | shmulcl |  |-  ( ( H e. SH /\ T e. CC /\ C e. H ) -> ( T .h C ) e. H ) | 
						
							| 54 | 47 52 4 53 | syl3anc |  |-  ( ph -> ( T .h C ) e. H ) | 
						
							| 55 |  | shaddcl |  |-  ( ( H e. SH /\ B e. H /\ ( T .h C ) e. H ) -> ( B +h ( T .h C ) ) e. H ) | 
						
							| 56 | 47 3 54 55 | syl3anc |  |-  ( ph -> ( B +h ( T .h C ) ) e. H ) | 
						
							| 57 | 45 5 56 | rspcdva |  |-  ( ph -> ( normh ` ( A -h B ) ) <_ ( normh ` ( A -h ( B +h ( T .h C ) ) ) ) ) | 
						
							| 58 | 1 | cheli |  |-  ( ( T .h C ) e. H -> ( T .h C ) e. ~H ) | 
						
							| 59 | 54 58 | syl |  |-  ( ph -> ( T .h C ) e. ~H ) | 
						
							| 60 |  | hvsubass |  |-  ( ( A e. ~H /\ B e. ~H /\ ( T .h C ) e. ~H ) -> ( ( A -h B ) -h ( T .h C ) ) = ( A -h ( B +h ( T .h C ) ) ) ) | 
						
							| 61 | 2 8 59 60 | syl3anc |  |-  ( ph -> ( ( A -h B ) -h ( T .h C ) ) = ( A -h ( B +h ( T .h C ) ) ) ) | 
						
							| 62 | 61 | fveq2d |  |-  ( ph -> ( normh ` ( ( A -h B ) -h ( T .h C ) ) ) = ( normh ` ( A -h ( B +h ( T .h C ) ) ) ) ) | 
						
							| 63 | 57 62 | breqtrrd |  |-  ( ph -> ( normh ` ( A -h B ) ) <_ ( normh ` ( ( A -h B ) -h ( T .h C ) ) ) ) | 
						
							| 64 |  | normcl |  |-  ( ( A -h B ) e. ~H -> ( normh ` ( A -h B ) ) e. RR ) | 
						
							| 65 | 10 64 | syl |  |-  ( ph -> ( normh ` ( A -h B ) ) e. RR ) | 
						
							| 66 |  | hvsubcl |  |-  ( ( ( A -h B ) e. ~H /\ ( T .h C ) e. ~H ) -> ( ( A -h B ) -h ( T .h C ) ) e. ~H ) | 
						
							| 67 | 10 59 66 | syl2anc |  |-  ( ph -> ( ( A -h B ) -h ( T .h C ) ) e. ~H ) | 
						
							| 68 |  | normcl |  |-  ( ( ( A -h B ) -h ( T .h C ) ) e. ~H -> ( normh ` ( ( A -h B ) -h ( T .h C ) ) ) e. RR ) | 
						
							| 69 | 67 68 | syl |  |-  ( ph -> ( normh ` ( ( A -h B ) -h ( T .h C ) ) ) e. RR ) | 
						
							| 70 |  | normge0 |  |-  ( ( A -h B ) e. ~H -> 0 <_ ( normh ` ( A -h B ) ) ) | 
						
							| 71 | 10 70 | syl |  |-  ( ph -> 0 <_ ( normh ` ( A -h B ) ) ) | 
						
							| 72 | 24 65 69 71 63 | letrd |  |-  ( ph -> 0 <_ ( normh ` ( ( A -h B ) -h ( T .h C ) ) ) ) | 
						
							| 73 | 65 69 71 72 | le2sqd |  |-  ( ph -> ( ( normh ` ( A -h B ) ) <_ ( normh ` ( ( A -h B ) -h ( T .h C ) ) ) <-> ( ( normh ` ( A -h B ) ) ^ 2 ) <_ ( ( normh ` ( ( A -h B ) -h ( T .h C ) ) ) ^ 2 ) ) ) | 
						
							| 74 | 63 73 | mpbid |  |-  ( ph -> ( ( normh ` ( A -h B ) ) ^ 2 ) <_ ( ( normh ` ( ( A -h B ) -h ( T .h C ) ) ) ^ 2 ) ) | 
						
							| 75 | 69 | resqcld |  |-  ( ph -> ( ( normh ` ( ( A -h B ) -h ( T .h C ) ) ) ^ 2 ) e. RR ) | 
						
							| 76 | 65 | resqcld |  |-  ( ph -> ( ( normh ` ( A -h B ) ) ^ 2 ) e. RR ) | 
						
							| 77 | 75 76 | subge0d |  |-  ( ph -> ( 0 <_ ( ( ( normh ` ( ( A -h B ) -h ( T .h C ) ) ) ^ 2 ) - ( ( normh ` ( A -h B ) ) ^ 2 ) ) <-> ( ( normh ` ( A -h B ) ) ^ 2 ) <_ ( ( normh ` ( ( A -h B ) -h ( T .h C ) ) ) ^ 2 ) ) ) | 
						
							| 78 | 74 77 | mpbird |  |-  ( ph -> 0 <_ ( ( ( normh ` ( ( A -h B ) -h ( T .h C ) ) ) ^ 2 ) - ( ( normh ` ( A -h B ) ) ^ 2 ) ) ) | 
						
							| 79 |  | 2z |  |-  2 e. ZZ | 
						
							| 80 |  | rpexpcl |  |-  ( ( ( ( C .ih C ) + 1 ) e. RR+ /\ 2 e. ZZ ) -> ( ( ( C .ih C ) + 1 ) ^ 2 ) e. RR+ ) | 
						
							| 81 | 49 79 80 | sylancl |  |-  ( ph -> ( ( ( C .ih C ) + 1 ) ^ 2 ) e. RR+ ) | 
						
							| 82 | 17 81 | rerpdivcld |  |-  ( ph -> ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) e. RR ) | 
						
							| 83 | 82 23 | remulcld |  |-  ( ph -> ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 2 ) ) e. RR ) | 
						
							| 84 | 83 | recnd |  |-  ( ph -> ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 2 ) ) e. CC ) | 
						
							| 85 | 84 | negcld |  |-  ( ph -> -u ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 2 ) ) e. CC ) | 
						
							| 86 |  | hicl |  |-  ( ( ( A -h B ) e. ~H /\ ( A -h B ) e. ~H ) -> ( ( A -h B ) .ih ( A -h B ) ) e. CC ) | 
						
							| 87 | 10 10 86 | syl2anc |  |-  ( ph -> ( ( A -h B ) .ih ( A -h B ) ) e. CC ) | 
						
							| 88 | 85 87 | pncand |  |-  ( ph -> ( ( -u ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 2 ) ) + ( ( A -h B ) .ih ( A -h B ) ) ) - ( ( A -h B ) .ih ( A -h B ) ) ) = -u ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 2 ) ) ) | 
						
							| 89 |  | normsq |  |-  ( ( ( A -h B ) -h ( T .h C ) ) e. ~H -> ( ( normh ` ( ( A -h B ) -h ( T .h C ) ) ) ^ 2 ) = ( ( ( A -h B ) -h ( T .h C ) ) .ih ( ( A -h B ) -h ( T .h C ) ) ) ) | 
						
							| 90 | 67 89 | syl |  |-  ( ph -> ( ( normh ` ( ( A -h B ) -h ( T .h C ) ) ) ^ 2 ) = ( ( ( A -h B ) -h ( T .h C ) ) .ih ( ( A -h B ) -h ( T .h C ) ) ) ) | 
						
							| 91 |  | his2sub |  |-  ( ( ( A -h B ) e. ~H /\ ( T .h C ) e. ~H /\ ( ( A -h B ) -h ( T .h C ) ) e. ~H ) -> ( ( ( A -h B ) -h ( T .h C ) ) .ih ( ( A -h B ) -h ( T .h C ) ) ) = ( ( ( A -h B ) .ih ( ( A -h B ) -h ( T .h C ) ) ) - ( ( T .h C ) .ih ( ( A -h B ) -h ( T .h C ) ) ) ) ) | 
						
							| 92 | 10 59 67 91 | syl3anc |  |-  ( ph -> ( ( ( A -h B ) -h ( T .h C ) ) .ih ( ( A -h B ) -h ( T .h C ) ) ) = ( ( ( A -h B ) .ih ( ( A -h B ) -h ( T .h C ) ) ) - ( ( T .h C ) .ih ( ( A -h B ) -h ( T .h C ) ) ) ) ) | 
						
							| 93 |  | his2sub2 |  |-  ( ( ( A -h B ) e. ~H /\ ( A -h B ) e. ~H /\ ( T .h C ) e. ~H ) -> ( ( A -h B ) .ih ( ( A -h B ) -h ( T .h C ) ) ) = ( ( ( A -h B ) .ih ( A -h B ) ) - ( ( A -h B ) .ih ( T .h C ) ) ) ) | 
						
							| 94 | 10 10 59 93 | syl3anc |  |-  ( ph -> ( ( A -h B ) .ih ( ( A -h B ) -h ( T .h C ) ) ) = ( ( ( A -h B ) .ih ( A -h B ) ) - ( ( A -h B ) .ih ( T .h C ) ) ) ) | 
						
							| 95 | 94 | oveq1d |  |-  ( ph -> ( ( ( A -h B ) .ih ( ( A -h B ) -h ( T .h C ) ) ) - ( ( T .h C ) .ih ( ( A -h B ) -h ( T .h C ) ) ) ) = ( ( ( ( A -h B ) .ih ( A -h B ) ) - ( ( A -h B ) .ih ( T .h C ) ) ) - ( ( T .h C ) .ih ( ( A -h B ) -h ( T .h C ) ) ) ) ) | 
						
							| 96 |  | hicl |  |-  ( ( ( A -h B ) e. ~H /\ ( T .h C ) e. ~H ) -> ( ( A -h B ) .ih ( T .h C ) ) e. CC ) | 
						
							| 97 | 10 59 96 | syl2anc |  |-  ( ph -> ( ( A -h B ) .ih ( T .h C ) ) e. CC ) | 
						
							| 98 |  | his2sub2 |  |-  ( ( ( T .h C ) e. ~H /\ ( A -h B ) e. ~H /\ ( T .h C ) e. ~H ) -> ( ( T .h C ) .ih ( ( A -h B ) -h ( T .h C ) ) ) = ( ( ( T .h C ) .ih ( A -h B ) ) - ( ( T .h C ) .ih ( T .h C ) ) ) ) | 
						
							| 99 | 59 10 59 98 | syl3anc |  |-  ( ph -> ( ( T .h C ) .ih ( ( A -h B ) -h ( T .h C ) ) ) = ( ( ( T .h C ) .ih ( A -h B ) ) - ( ( T .h C ) .ih ( T .h C ) ) ) ) | 
						
							| 100 |  | hicl |  |-  ( ( ( T .h C ) e. ~H /\ ( A -h B ) e. ~H ) -> ( ( T .h C ) .ih ( A -h B ) ) e. CC ) | 
						
							| 101 | 59 10 100 | syl2anc |  |-  ( ph -> ( ( T .h C ) .ih ( A -h B ) ) e. CC ) | 
						
							| 102 |  | hicl |  |-  ( ( ( T .h C ) e. ~H /\ ( T .h C ) e. ~H ) -> ( ( T .h C ) .ih ( T .h C ) ) e. CC ) | 
						
							| 103 | 59 59 102 | syl2anc |  |-  ( ph -> ( ( T .h C ) .ih ( T .h C ) ) e. CC ) | 
						
							| 104 | 101 103 | subcld |  |-  ( ph -> ( ( ( T .h C ) .ih ( A -h B ) ) - ( ( T .h C ) .ih ( T .h C ) ) ) e. CC ) | 
						
							| 105 | 99 104 | eqeltrd |  |-  ( ph -> ( ( T .h C ) .ih ( ( A -h B ) -h ( T .h C ) ) ) e. CC ) | 
						
							| 106 | 87 97 105 | subsub4d |  |-  ( ph -> ( ( ( ( A -h B ) .ih ( A -h B ) ) - ( ( A -h B ) .ih ( T .h C ) ) ) - ( ( T .h C ) .ih ( ( A -h B ) -h ( T .h C ) ) ) ) = ( ( ( A -h B ) .ih ( A -h B ) ) - ( ( ( A -h B ) .ih ( T .h C ) ) + ( ( T .h C ) .ih ( ( A -h B ) -h ( T .h C ) ) ) ) ) ) | 
						
							| 107 | 82 | recnd |  |-  ( ph -> ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) e. CC ) | 
						
							| 108 | 35 | a1i |  |-  ( ph -> 1 e. CC ) | 
						
							| 109 | 107 48 108 | adddid |  |-  ( ph -> ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( ( C .ih C ) + 1 ) + 1 ) ) = ( ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 1 ) ) + ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. 1 ) ) ) | 
						
							| 110 | 39 | oveq2d |  |-  ( ph -> ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 2 ) ) = ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( ( C .ih C ) + 1 ) + 1 ) ) ) | 
						
							| 111 |  | his5 |  |-  ( ( T e. CC /\ ( A -h B ) e. ~H /\ C e. ~H ) -> ( ( A -h B ) .ih ( T .h C ) ) = ( ( * ` T ) x. ( ( A -h B ) .ih C ) ) ) | 
						
							| 112 | 52 10 12 111 | syl3anc |  |-  ( ph -> ( ( A -h B ) .ih ( T .h C ) ) = ( ( * ` T ) x. ( ( A -h B ) .ih C ) ) ) | 
						
							| 113 | 52 | cjcld |  |-  ( ph -> ( * ` T ) e. CC ) | 
						
							| 114 | 113 14 | mulcomd |  |-  ( ph -> ( ( * ` T ) x. ( ( A -h B ) .ih C ) ) = ( ( ( A -h B ) .ih C ) x. ( * ` T ) ) ) | 
						
							| 115 | 14 | cjcld |  |-  ( ph -> ( * ` ( ( A -h B ) .ih C ) ) e. CC ) | 
						
							| 116 | 14 115 48 50 | divassd |  |-  ( ph -> ( ( ( ( A -h B ) .ih C ) x. ( * ` ( ( A -h B ) .ih C ) ) ) / ( ( C .ih C ) + 1 ) ) = ( ( ( A -h B ) .ih C ) x. ( ( * ` ( ( A -h B ) .ih C ) ) / ( ( C .ih C ) + 1 ) ) ) ) | 
						
							| 117 | 14 | absvalsqd |  |-  ( ph -> ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) = ( ( ( A -h B ) .ih C ) x. ( * ` ( ( A -h B ) .ih C ) ) ) ) | 
						
							| 118 | 117 | oveq1d |  |-  ( ph -> ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( C .ih C ) + 1 ) ) = ( ( ( ( A -h B ) .ih C ) x. ( * ` ( ( A -h B ) .ih C ) ) ) / ( ( C .ih C ) + 1 ) ) ) | 
						
							| 119 | 6 | fveq2i |  |-  ( * ` T ) = ( * ` ( ( ( A -h B ) .ih C ) / ( ( C .ih C ) + 1 ) ) ) | 
						
							| 120 | 14 48 50 | cjdivd |  |-  ( ph -> ( * ` ( ( ( A -h B ) .ih C ) / ( ( C .ih C ) + 1 ) ) ) = ( ( * ` ( ( A -h B ) .ih C ) ) / ( * ` ( ( C .ih C ) + 1 ) ) ) ) | 
						
							| 121 | 26 | cjred |  |-  ( ph -> ( * ` ( ( C .ih C ) + 1 ) ) = ( ( C .ih C ) + 1 ) ) | 
						
							| 122 | 121 | oveq2d |  |-  ( ph -> ( ( * ` ( ( A -h B ) .ih C ) ) / ( * ` ( ( C .ih C ) + 1 ) ) ) = ( ( * ` ( ( A -h B ) .ih C ) ) / ( ( C .ih C ) + 1 ) ) ) | 
						
							| 123 | 120 122 | eqtrd |  |-  ( ph -> ( * ` ( ( ( A -h B ) .ih C ) / ( ( C .ih C ) + 1 ) ) ) = ( ( * ` ( ( A -h B ) .ih C ) ) / ( ( C .ih C ) + 1 ) ) ) | 
						
							| 124 | 119 123 | eqtrid |  |-  ( ph -> ( * ` T ) = ( ( * ` ( ( A -h B ) .ih C ) ) / ( ( C .ih C ) + 1 ) ) ) | 
						
							| 125 | 124 | oveq2d |  |-  ( ph -> ( ( ( A -h B ) .ih C ) x. ( * ` T ) ) = ( ( ( A -h B ) .ih C ) x. ( ( * ` ( ( A -h B ) .ih C ) ) / ( ( C .ih C ) + 1 ) ) ) ) | 
						
							| 126 | 116 118 125 | 3eqtr4rd |  |-  ( ph -> ( ( ( A -h B ) .ih C ) x. ( * ` T ) ) = ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( C .ih C ) + 1 ) ) ) | 
						
							| 127 | 112 114 126 | 3eqtrd |  |-  ( ph -> ( ( A -h B ) .ih ( T .h C ) ) = ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( C .ih C ) + 1 ) ) ) | 
						
							| 128 | 17 | recnd |  |-  ( ph -> ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) e. CC ) | 
						
							| 129 | 128 48 | mulcomd |  |-  ( ph -> ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) x. ( ( C .ih C ) + 1 ) ) = ( ( ( C .ih C ) + 1 ) x. ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) ) ) | 
						
							| 130 | 48 | sqvald |  |-  ( ph -> ( ( ( C .ih C ) + 1 ) ^ 2 ) = ( ( ( C .ih C ) + 1 ) x. ( ( C .ih C ) + 1 ) ) ) | 
						
							| 131 | 129 130 | oveq12d |  |-  ( ph -> ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) x. ( ( C .ih C ) + 1 ) ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) = ( ( ( ( C .ih C ) + 1 ) x. ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) ) / ( ( ( C .ih C ) + 1 ) x. ( ( C .ih C ) + 1 ) ) ) ) | 
						
							| 132 | 128 48 48 50 50 | divcan5d |  |-  ( ph -> ( ( ( ( C .ih C ) + 1 ) x. ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) ) / ( ( ( C .ih C ) + 1 ) x. ( ( C .ih C ) + 1 ) ) ) = ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( C .ih C ) + 1 ) ) ) | 
						
							| 133 | 131 132 | eqtr2d |  |-  ( ph -> ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( C .ih C ) + 1 ) ) = ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) x. ( ( C .ih C ) + 1 ) ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) ) | 
						
							| 134 | 26 | resqcld |  |-  ( ph -> ( ( ( C .ih C ) + 1 ) ^ 2 ) e. RR ) | 
						
							| 135 | 134 | recnd |  |-  ( ph -> ( ( ( C .ih C ) + 1 ) ^ 2 ) e. CC ) | 
						
							| 136 | 81 | rpne0d |  |-  ( ph -> ( ( ( C .ih C ) + 1 ) ^ 2 ) =/= 0 ) | 
						
							| 137 | 128 48 135 136 | div23d |  |-  ( ph -> ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) x. ( ( C .ih C ) + 1 ) ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) = ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 1 ) ) ) | 
						
							| 138 | 127 133 137 | 3eqtrd |  |-  ( ph -> ( ( A -h B ) .ih ( T .h C ) ) = ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 1 ) ) ) | 
						
							| 139 | 82 26 | remulcld |  |-  ( ph -> ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 1 ) ) e. RR ) | 
						
							| 140 | 138 139 | eqeltrd |  |-  ( ph -> ( ( A -h B ) .ih ( T .h C ) ) e. RR ) | 
						
							| 141 |  | hire |  |-  ( ( ( A -h B ) e. ~H /\ ( T .h C ) e. ~H ) -> ( ( ( A -h B ) .ih ( T .h C ) ) e. RR <-> ( ( A -h B ) .ih ( T .h C ) ) = ( ( T .h C ) .ih ( A -h B ) ) ) ) | 
						
							| 142 | 10 59 141 | syl2anc |  |-  ( ph -> ( ( ( A -h B ) .ih ( T .h C ) ) e. RR <-> ( ( A -h B ) .ih ( T .h C ) ) = ( ( T .h C ) .ih ( A -h B ) ) ) ) | 
						
							| 143 | 140 142 | mpbid |  |-  ( ph -> ( ( A -h B ) .ih ( T .h C ) ) = ( ( T .h C ) .ih ( A -h B ) ) ) | 
						
							| 144 | 143 138 | eqtr3d |  |-  ( ph -> ( ( T .h C ) .ih ( A -h B ) ) = ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 1 ) ) ) | 
						
							| 145 |  | his35 |  |-  ( ( ( T e. CC /\ T e. CC ) /\ ( C e. ~H /\ C e. ~H ) ) -> ( ( T .h C ) .ih ( T .h C ) ) = ( ( T x. ( * ` T ) ) x. ( C .ih C ) ) ) | 
						
							| 146 | 52 52 12 12 145 | syl22anc |  |-  ( ph -> ( ( T .h C ) .ih ( T .h C ) ) = ( ( T x. ( * ` T ) ) x. ( C .ih C ) ) ) | 
						
							| 147 | 6 | fveq2i |  |-  ( abs ` T ) = ( abs ` ( ( ( A -h B ) .ih C ) / ( ( C .ih C ) + 1 ) ) ) | 
						
							| 148 | 14 48 50 | absdivd |  |-  ( ph -> ( abs ` ( ( ( A -h B ) .ih C ) / ( ( C .ih C ) + 1 ) ) ) = ( ( abs ` ( ( A -h B ) .ih C ) ) / ( abs ` ( ( C .ih C ) + 1 ) ) ) ) | 
						
							| 149 | 49 | rpge0d |  |-  ( ph -> 0 <_ ( ( C .ih C ) + 1 ) ) | 
						
							| 150 | 26 149 | absidd |  |-  ( ph -> ( abs ` ( ( C .ih C ) + 1 ) ) = ( ( C .ih C ) + 1 ) ) | 
						
							| 151 | 150 | oveq2d |  |-  ( ph -> ( ( abs ` ( ( A -h B ) .ih C ) ) / ( abs ` ( ( C .ih C ) + 1 ) ) ) = ( ( abs ` ( ( A -h B ) .ih C ) ) / ( ( C .ih C ) + 1 ) ) ) | 
						
							| 152 | 148 151 | eqtrd |  |-  ( ph -> ( abs ` ( ( ( A -h B ) .ih C ) / ( ( C .ih C ) + 1 ) ) ) = ( ( abs ` ( ( A -h B ) .ih C ) ) / ( ( C .ih C ) + 1 ) ) ) | 
						
							| 153 | 147 152 | eqtrid |  |-  ( ph -> ( abs ` T ) = ( ( abs ` ( ( A -h B ) .ih C ) ) / ( ( C .ih C ) + 1 ) ) ) | 
						
							| 154 | 153 | oveq1d |  |-  ( ph -> ( ( abs ` T ) ^ 2 ) = ( ( ( abs ` ( ( A -h B ) .ih C ) ) / ( ( C .ih C ) + 1 ) ) ^ 2 ) ) | 
						
							| 155 | 52 | absvalsqd |  |-  ( ph -> ( ( abs ` T ) ^ 2 ) = ( T x. ( * ` T ) ) ) | 
						
							| 156 | 16 48 50 | sqdivd |  |-  ( ph -> ( ( ( abs ` ( ( A -h B ) .ih C ) ) / ( ( C .ih C ) + 1 ) ) ^ 2 ) = ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) ) | 
						
							| 157 | 154 155 156 | 3eqtr3d |  |-  ( ph -> ( T x. ( * ` T ) ) = ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) ) | 
						
							| 158 | 157 | oveq1d |  |-  ( ph -> ( ( T x. ( * ` T ) ) x. ( C .ih C ) ) = ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( C .ih C ) ) ) | 
						
							| 159 | 146 158 | eqtrd |  |-  ( ph -> ( ( T .h C ) .ih ( T .h C ) ) = ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( C .ih C ) ) ) | 
						
							| 160 | 144 159 | oveq12d |  |-  ( ph -> ( ( ( T .h C ) .ih ( A -h B ) ) - ( ( T .h C ) .ih ( T .h C ) ) ) = ( ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 1 ) ) - ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( C .ih C ) ) ) ) | 
						
							| 161 |  | pncan2 |  |-  ( ( ( C .ih C ) e. CC /\ 1 e. CC ) -> ( ( ( C .ih C ) + 1 ) - ( C .ih C ) ) = 1 ) | 
						
							| 162 | 34 35 161 | sylancl |  |-  ( ph -> ( ( ( C .ih C ) + 1 ) - ( C .ih C ) ) = 1 ) | 
						
							| 163 | 162 | oveq2d |  |-  ( ph -> ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( ( C .ih C ) + 1 ) - ( C .ih C ) ) ) = ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. 1 ) ) | 
						
							| 164 | 107 48 34 | subdid |  |-  ( ph -> ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( ( C .ih C ) + 1 ) - ( C .ih C ) ) ) = ( ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 1 ) ) - ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( C .ih C ) ) ) ) | 
						
							| 165 | 163 164 | eqtr3d |  |-  ( ph -> ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. 1 ) = ( ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 1 ) ) - ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( C .ih C ) ) ) ) | 
						
							| 166 | 160 99 165 | 3eqtr4d |  |-  ( ph -> ( ( T .h C ) .ih ( ( A -h B ) -h ( T .h C ) ) ) = ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. 1 ) ) | 
						
							| 167 | 138 166 | oveq12d |  |-  ( ph -> ( ( ( A -h B ) .ih ( T .h C ) ) + ( ( T .h C ) .ih ( ( A -h B ) -h ( T .h C ) ) ) ) = ( ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 1 ) ) + ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. 1 ) ) ) | 
						
							| 168 | 109 110 167 | 3eqtr4rd |  |-  ( ph -> ( ( ( A -h B ) .ih ( T .h C ) ) + ( ( T .h C ) .ih ( ( A -h B ) -h ( T .h C ) ) ) ) = ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 2 ) ) ) | 
						
							| 169 | 168 | oveq2d |  |-  ( ph -> ( ( ( A -h B ) .ih ( A -h B ) ) - ( ( ( A -h B ) .ih ( T .h C ) ) + ( ( T .h C ) .ih ( ( A -h B ) -h ( T .h C ) ) ) ) ) = ( ( ( A -h B ) .ih ( A -h B ) ) - ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 2 ) ) ) ) | 
						
							| 170 | 95 106 169 | 3eqtrd |  |-  ( ph -> ( ( ( A -h B ) .ih ( ( A -h B ) -h ( T .h C ) ) ) - ( ( T .h C ) .ih ( ( A -h B ) -h ( T .h C ) ) ) ) = ( ( ( A -h B ) .ih ( A -h B ) ) - ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 2 ) ) ) ) | 
						
							| 171 | 90 92 170 | 3eqtrd |  |-  ( ph -> ( ( normh ` ( ( A -h B ) -h ( T .h C ) ) ) ^ 2 ) = ( ( ( A -h B ) .ih ( A -h B ) ) - ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 2 ) ) ) ) | 
						
							| 172 | 87 84 | negsubd |  |-  ( ph -> ( ( ( A -h B ) .ih ( A -h B ) ) + -u ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 2 ) ) ) = ( ( ( A -h B ) .ih ( A -h B ) ) - ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 2 ) ) ) ) | 
						
							| 173 | 87 85 | addcomd |  |-  ( ph -> ( ( ( A -h B ) .ih ( A -h B ) ) + -u ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 2 ) ) ) = ( -u ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 2 ) ) + ( ( A -h B ) .ih ( A -h B ) ) ) ) | 
						
							| 174 | 171 172 173 | 3eqtr2d |  |-  ( ph -> ( ( normh ` ( ( A -h B ) -h ( T .h C ) ) ) ^ 2 ) = ( -u ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 2 ) ) + ( ( A -h B ) .ih ( A -h B ) ) ) ) | 
						
							| 175 |  | normsq |  |-  ( ( A -h B ) e. ~H -> ( ( normh ` ( A -h B ) ) ^ 2 ) = ( ( A -h B ) .ih ( A -h B ) ) ) | 
						
							| 176 | 10 175 | syl |  |-  ( ph -> ( ( normh ` ( A -h B ) ) ^ 2 ) = ( ( A -h B ) .ih ( A -h B ) ) ) | 
						
							| 177 | 174 176 | oveq12d |  |-  ( ph -> ( ( ( normh ` ( ( A -h B ) -h ( T .h C ) ) ) ^ 2 ) - ( ( normh ` ( A -h B ) ) ^ 2 ) ) = ( ( -u ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 2 ) ) + ( ( A -h B ) .ih ( A -h B ) ) ) - ( ( A -h B ) .ih ( A -h B ) ) ) ) | 
						
							| 178 | 23 | renegcld |  |-  ( ph -> -u ( ( C .ih C ) + 2 ) e. RR ) | 
						
							| 179 | 178 | recnd |  |-  ( ph -> -u ( ( C .ih C ) + 2 ) e. CC ) | 
						
							| 180 | 128 179 135 136 | div23d |  |-  ( ph -> ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) x. -u ( ( C .ih C ) + 2 ) ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) = ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. -u ( ( C .ih C ) + 2 ) ) ) | 
						
							| 181 | 23 | recnd |  |-  ( ph -> ( ( C .ih C ) + 2 ) e. CC ) | 
						
							| 182 | 107 181 | mulneg2d |  |-  ( ph -> ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. -u ( ( C .ih C ) + 2 ) ) = -u ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 2 ) ) ) | 
						
							| 183 | 180 182 | eqtrd |  |-  ( ph -> ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) x. -u ( ( C .ih C ) + 2 ) ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) = -u ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 2 ) ) ) | 
						
							| 184 | 88 177 183 | 3eqtr4rd |  |-  ( ph -> ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) x. -u ( ( C .ih C ) + 2 ) ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) = ( ( ( normh ` ( ( A -h B ) -h ( T .h C ) ) ) ^ 2 ) - ( ( normh ` ( A -h B ) ) ^ 2 ) ) ) | 
						
							| 185 | 78 184 | breqtrrd |  |-  ( ph -> 0 <_ ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) x. -u ( ( C .ih C ) + 2 ) ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) ) | 
						
							| 186 | 17 178 | remulcld |  |-  ( ph -> ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) x. -u ( ( C .ih C ) + 2 ) ) e. RR ) | 
						
							| 187 | 186 81 | ge0divd |  |-  ( ph -> ( 0 <_ ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) x. -u ( ( C .ih C ) + 2 ) ) <-> 0 <_ ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) x. -u ( ( C .ih C ) + 2 ) ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) ) ) | 
						
							| 188 | 185 187 | mpbird |  |-  ( ph -> 0 <_ ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) x. -u ( ( C .ih C ) + 2 ) ) ) | 
						
							| 189 |  | mulneg12 |  |-  ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) e. CC /\ ( ( C .ih C ) + 2 ) e. CC ) -> ( -u ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) x. ( ( C .ih C ) + 2 ) ) = ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) x. -u ( ( C .ih C ) + 2 ) ) ) | 
						
							| 190 | 128 181 189 | syl2anc |  |-  ( ph -> ( -u ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) x. ( ( C .ih C ) + 2 ) ) = ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) x. -u ( ( C .ih C ) + 2 ) ) ) | 
						
							| 191 | 188 190 | breqtrrd |  |-  ( ph -> 0 <_ ( -u ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) x. ( ( C .ih C ) + 2 ) ) ) | 
						
							| 192 | 18 42 191 | prodge0ld |  |-  ( ph -> 0 <_ -u ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) ) | 
						
							| 193 | 17 | le0neg1d |  |-  ( ph -> ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) <_ 0 <-> 0 <_ -u ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) ) ) | 
						
							| 194 | 192 193 | mpbird |  |-  ( ph -> ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) <_ 0 ) | 
						
							| 195 | 15 | sqge0d |  |-  ( ph -> 0 <_ ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) ) | 
						
							| 196 |  | 0re |  |-  0 e. RR | 
						
							| 197 |  | letri3 |  |-  ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) e. RR /\ 0 e. RR ) -> ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) = 0 <-> ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) <_ 0 /\ 0 <_ ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) ) ) ) | 
						
							| 198 | 17 196 197 | sylancl |  |-  ( ph -> ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) = 0 <-> ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) <_ 0 /\ 0 <_ ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) ) ) ) | 
						
							| 199 | 194 195 198 | mpbir2and |  |-  ( ph -> ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) = 0 ) | 
						
							| 200 | 16 199 | sqeq0d |  |-  ( ph -> ( abs ` ( ( A -h B ) .ih C ) ) = 0 ) | 
						
							| 201 | 14 200 | abs00d |  |-  ( ph -> ( ( A -h B ) .ih C ) = 0 ) |