| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							pjhth.1 | 
							 |-  H e. CH  | 
						
						
							| 2 | 
							
								
							 | 
							pjhth.2 | 
							 |-  ( ph -> A e. ~H )  | 
						
						
							| 3 | 
							
								2
							 | 
							adantr | 
							 |-  ( ( ph /\ ( x e. H /\ A. z e. H ( normh ` ( A -h x ) ) <_ ( normh ` ( A -h z ) ) ) ) -> A e. ~H )  | 
						
						
							| 4 | 
							
								1
							 | 
							cheli | 
							 |-  ( x e. H -> x e. ~H )  | 
						
						
							| 5 | 
							
								4
							 | 
							ad2antrl | 
							 |-  ( ( ph /\ ( x e. H /\ A. z e. H ( normh ` ( A -h x ) ) <_ ( normh ` ( A -h z ) ) ) ) -> x e. ~H )  | 
						
						
							| 6 | 
							
								
							 | 
							hvsubcl | 
							 |-  ( ( A e. ~H /\ x e. ~H ) -> ( A -h x ) e. ~H )  | 
						
						
							| 7 | 
							
								3 5 6
							 | 
							syl2anc | 
							 |-  ( ( ph /\ ( x e. H /\ A. z e. H ( normh ` ( A -h x ) ) <_ ( normh ` ( A -h z ) ) ) ) -> ( A -h x ) e. ~H )  | 
						
						
							| 8 | 
							
								3
							 | 
							adantr | 
							 |-  ( ( ( ph /\ ( x e. H /\ A. z e. H ( normh ` ( A -h x ) ) <_ ( normh ` ( A -h z ) ) ) ) /\ y e. H ) -> A e. ~H )  | 
						
						
							| 9 | 
							
								
							 | 
							simplrl | 
							 |-  ( ( ( ph /\ ( x e. H /\ A. z e. H ( normh ` ( A -h x ) ) <_ ( normh ` ( A -h z ) ) ) ) /\ y e. H ) -> x e. H )  | 
						
						
							| 10 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( ph /\ ( x e. H /\ A. z e. H ( normh ` ( A -h x ) ) <_ ( normh ` ( A -h z ) ) ) ) /\ y e. H ) -> y e. H )  | 
						
						
							| 11 | 
							
								
							 | 
							simplrr | 
							 |-  ( ( ( ph /\ ( x e. H /\ A. z e. H ( normh ` ( A -h x ) ) <_ ( normh ` ( A -h z ) ) ) ) /\ y e. H ) -> A. z e. H ( normh ` ( A -h x ) ) <_ ( normh ` ( A -h z ) ) )  | 
						
						
							| 12 | 
							
								
							 | 
							eqid | 
							 |-  ( ( ( A -h x ) .ih y ) / ( ( y .ih y ) + 1 ) ) = ( ( ( A -h x ) .ih y ) / ( ( y .ih y ) + 1 ) )  | 
						
						
							| 13 | 
							
								1 8 9 10 11 12
							 | 
							pjhthlem1 | 
							 |-  ( ( ( ph /\ ( x e. H /\ A. z e. H ( normh ` ( A -h x ) ) <_ ( normh ` ( A -h z ) ) ) ) /\ y e. H ) -> ( ( A -h x ) .ih y ) = 0 )  | 
						
						
							| 14 | 
							
								13
							 | 
							ralrimiva | 
							 |-  ( ( ph /\ ( x e. H /\ A. z e. H ( normh ` ( A -h x ) ) <_ ( normh ` ( A -h z ) ) ) ) -> A. y e. H ( ( A -h x ) .ih y ) = 0 )  | 
						
						
							| 15 | 
							
								1
							 | 
							chshii | 
							 |-  H e. SH  | 
						
						
							| 16 | 
							
								
							 | 
							shocel | 
							 |-  ( H e. SH -> ( ( A -h x ) e. ( _|_ ` H ) <-> ( ( A -h x ) e. ~H /\ A. y e. H ( ( A -h x ) .ih y ) = 0 ) ) )  | 
						
						
							| 17 | 
							
								15 16
							 | 
							ax-mp | 
							 |-  ( ( A -h x ) e. ( _|_ ` H ) <-> ( ( A -h x ) e. ~H /\ A. y e. H ( ( A -h x ) .ih y ) = 0 ) )  | 
						
						
							| 18 | 
							
								7 14 17
							 | 
							sylanbrc | 
							 |-  ( ( ph /\ ( x e. H /\ A. z e. H ( normh ` ( A -h x ) ) <_ ( normh ` ( A -h z ) ) ) ) -> ( A -h x ) e. ( _|_ ` H ) )  | 
						
						
							| 19 | 
							
								
							 | 
							hvpncan3 | 
							 |-  ( ( x e. ~H /\ A e. ~H ) -> ( x +h ( A -h x ) ) = A )  | 
						
						
							| 20 | 
							
								5 3 19
							 | 
							syl2anc | 
							 |-  ( ( ph /\ ( x e. H /\ A. z e. H ( normh ` ( A -h x ) ) <_ ( normh ` ( A -h z ) ) ) ) -> ( x +h ( A -h x ) ) = A )  | 
						
						
							| 21 | 
							
								20
							 | 
							eqcomd | 
							 |-  ( ( ph /\ ( x e. H /\ A. z e. H ( normh ` ( A -h x ) ) <_ ( normh ` ( A -h z ) ) ) ) -> A = ( x +h ( A -h x ) ) )  | 
						
						
							| 22 | 
							
								
							 | 
							oveq2 | 
							 |-  ( y = ( A -h x ) -> ( x +h y ) = ( x +h ( A -h x ) ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							rspceeqv | 
							 |-  ( ( ( A -h x ) e. ( _|_ ` H ) /\ A = ( x +h ( A -h x ) ) ) -> E. y e. ( _|_ ` H ) A = ( x +h y ) )  | 
						
						
							| 24 | 
							
								18 21 23
							 | 
							syl2anc | 
							 |-  ( ( ph /\ ( x e. H /\ A. z e. H ( normh ` ( A -h x ) ) <_ ( normh ` ( A -h z ) ) ) ) -> E. y e. ( _|_ ` H ) A = ( x +h y ) )  | 
						
						
							| 25 | 
							
								
							 | 
							df-hba | 
							 |-  ~H = ( BaseSet ` <. <. +h , .h >. , normh >. )  | 
						
						
							| 26 | 
							
								
							 | 
							eqid | 
							 |-  <. <. +h , .h >. , normh >. = <. <. +h , .h >. , normh >.  | 
						
						
							| 27 | 
							
								26
							 | 
							hhvs | 
							 |-  -h = ( -v ` <. <. +h , .h >. , normh >. )  | 
						
						
							| 28 | 
							
								26
							 | 
							hhnm | 
							 |-  normh = ( normCV ` <. <. +h , .h >. , normh >. )  | 
						
						
							| 29 | 
							
								
							 | 
							eqid | 
							 |-  <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. = <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >.  | 
						
						
							| 30 | 
							
								29 15
							 | 
							hhssba | 
							 |-  H = ( BaseSet ` <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. )  | 
						
						
							| 31 | 
							
								26
							 | 
							hhph | 
							 |-  <. <. +h , .h >. , normh >. e. CPreHilOLD  | 
						
						
							| 32 | 
							
								31
							 | 
							a1i | 
							 |-  ( ph -> <. <. +h , .h >. , normh >. e. CPreHilOLD )  | 
						
						
							| 33 | 
							
								26 29
							 | 
							hhsst | 
							 |-  ( H e. SH -> <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. e. ( SubSp ` <. <. +h , .h >. , normh >. ) )  | 
						
						
							| 34 | 
							
								15 33
							 | 
							ax-mp | 
							 |-  <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. e. ( SubSp ` <. <. +h , .h >. , normh >. )  | 
						
						
							| 35 | 
							
								29 1
							 | 
							hhssbnOLD | 
							 |-  <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. e. CBan  | 
						
						
							| 36 | 
							
								
							 | 
							elin | 
							 |-  ( <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. e. ( ( SubSp ` <. <. +h , .h >. , normh >. ) i^i CBan ) <-> ( <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. e. ( SubSp ` <. <. +h , .h >. , normh >. ) /\ <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. e. CBan ) )  | 
						
						
							| 37 | 
							
								34 35 36
							 | 
							mpbir2an | 
							 |-  <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. e. ( ( SubSp ` <. <. +h , .h >. , normh >. ) i^i CBan )  | 
						
						
							| 38 | 
							
								37
							 | 
							a1i | 
							 |-  ( ph -> <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. e. ( ( SubSp ` <. <. +h , .h >. , normh >. ) i^i CBan ) )  | 
						
						
							| 39 | 
							
								25 27 28 30 32 38 2
							 | 
							minveco | 
							 |-  ( ph -> E! x e. H A. z e. H ( normh ` ( A -h x ) ) <_ ( normh ` ( A -h z ) ) )  | 
						
						
							| 40 | 
							
								
							 | 
							reurex | 
							 |-  ( E! x e. H A. z e. H ( normh ` ( A -h x ) ) <_ ( normh ` ( A -h z ) ) -> E. x e. H A. z e. H ( normh ` ( A -h x ) ) <_ ( normh ` ( A -h z ) ) )  | 
						
						
							| 41 | 
							
								39 40
							 | 
							syl | 
							 |-  ( ph -> E. x e. H A. z e. H ( normh ` ( A -h x ) ) <_ ( normh ` ( A -h z ) ) )  | 
						
						
							| 42 | 
							
								24 41
							 | 
							reximddv | 
							 |-  ( ph -> E. x e. H E. y e. ( _|_ ` H ) A = ( x +h y ) )  |