Metamath Proof Explorer


Theorem pjhval

Description: Value of a projection. (Contributed by NM, 23-Oct-1999) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)

Ref Expression
Assertion pjhval
|- ( ( H e. CH /\ A e. ~H ) -> ( ( projh ` H ) ` A ) = ( iota_ x e. H E. y e. ( _|_ ` H ) A = ( x +h y ) ) )

Proof

Step Hyp Ref Expression
1 pjhfval
 |-  ( H e. CH -> ( projh ` H ) = ( z e. ~H |-> ( iota_ x e. H E. y e. ( _|_ ` H ) z = ( x +h y ) ) ) )
2 1 fveq1d
 |-  ( H e. CH -> ( ( projh ` H ) ` A ) = ( ( z e. ~H |-> ( iota_ x e. H E. y e. ( _|_ ` H ) z = ( x +h y ) ) ) ` A ) )
3 eqeq1
 |-  ( z = A -> ( z = ( x +h y ) <-> A = ( x +h y ) ) )
4 3 rexbidv
 |-  ( z = A -> ( E. y e. ( _|_ ` H ) z = ( x +h y ) <-> E. y e. ( _|_ ` H ) A = ( x +h y ) ) )
5 4 riotabidv
 |-  ( z = A -> ( iota_ x e. H E. y e. ( _|_ ` H ) z = ( x +h y ) ) = ( iota_ x e. H E. y e. ( _|_ ` H ) A = ( x +h y ) ) )
6 eqid
 |-  ( z e. ~H |-> ( iota_ x e. H E. y e. ( _|_ ` H ) z = ( x +h y ) ) ) = ( z e. ~H |-> ( iota_ x e. H E. y e. ( _|_ ` H ) z = ( x +h y ) ) )
7 riotaex
 |-  ( iota_ x e. H E. y e. ( _|_ ` H ) A = ( x +h y ) ) e. _V
8 5 6 7 fvmpt
 |-  ( A e. ~H -> ( ( z e. ~H |-> ( iota_ x e. H E. y e. ( _|_ ` H ) z = ( x +h y ) ) ) ` A ) = ( iota_ x e. H E. y e. ( _|_ ` H ) A = ( x +h y ) ) )
9 2 8 sylan9eq
 |-  ( ( H e. CH /\ A e. ~H ) -> ( ( projh ` H ) ` A ) = ( iota_ x e. H E. y e. ( _|_ ` H ) A = ( x +h y ) ) )