Metamath Proof Explorer


Theorem pjid

Description: The projection of a vector in the projection subspace is itself. (Contributed by NM, 9-Apr-2006) (New usage is discouraged.)

Ref Expression
Assertion pjid
|- ( ( H e. CH /\ A e. H ) -> ( ( projh ` H ) ` A ) = A )

Proof

Step Hyp Ref Expression
1 simpl
 |-  ( ( H e. CH /\ A e. H ) -> H e. CH )
2 chel
 |-  ( ( H e. CH /\ A e. H ) -> A e. ~H )
3 1 2 jca
 |-  ( ( H e. CH /\ A e. H ) -> ( H e. CH /\ A e. ~H ) )
4 pjch
 |-  ( ( H e. CH /\ A e. ~H ) -> ( A e. H <-> ( ( projh ` H ) ` A ) = A ) )
5 4 biimpa
 |-  ( ( ( H e. CH /\ A e. ~H ) /\ A e. H ) -> ( ( projh ` H ) ` A ) = A )
6 3 5 sylancom
 |-  ( ( H e. CH /\ A e. H ) -> ( ( projh ` H ) ` A ) = A )