Description: The projection of a vector in the projection subspace is itself. (Contributed by NM, 9-Apr-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | pjid | |- ( ( H e. CH /\ A e. H ) -> ( ( projh ` H ) ` A ) = A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl | |- ( ( H e. CH /\ A e. H ) -> H e. CH ) |
|
2 | chel | |- ( ( H e. CH /\ A e. H ) -> A e. ~H ) |
|
3 | 1 2 | jca | |- ( ( H e. CH /\ A e. H ) -> ( H e. CH /\ A e. ~H ) ) |
4 | pjch | |- ( ( H e. CH /\ A e. ~H ) -> ( A e. H <-> ( ( projh ` H ) ` A ) = A ) ) |
|
5 | 4 | biimpa | |- ( ( ( H e. CH /\ A e. ~H ) /\ A e. H ) -> ( ( projh ` H ) ` A ) = A ) |
6 | 3 5 | sylancom | |- ( ( H e. CH /\ A e. H ) -> ( ( projh ` H ) ` A ) = A ) |