Metamath Proof Explorer


Theorem pjidmi

Description: A projection is idempotent. Property (ii) of Beran p. 109. (Contributed by NM, 28-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses pjidm.1
|- H e. CH
pjidm.2
|- A e. ~H
Assertion pjidmi
|- ( ( projh ` H ) ` ( ( projh ` H ) ` A ) ) = ( ( projh ` H ) ` A )

Proof

Step Hyp Ref Expression
1 pjidm.1
 |-  H e. CH
2 pjidm.2
 |-  A e. ~H
3 1 2 pjclii
 |-  ( ( projh ` H ) ` A ) e. H
4 1 2 pjhclii
 |-  ( ( projh ` H ) ` A ) e. ~H
5 1 4 pjchi
 |-  ( ( ( projh ` H ) ` A ) e. H <-> ( ( projh ` H ) ` ( ( projh ` H ) ` A ) ) = ( ( projh ` H ) ` A ) )
6 3 5 mpbi
 |-  ( ( projh ` H ) ` ( ( projh ` H ) ` A ) ) = ( ( projh ` H ) ` A )