| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							pjadjt.1 | 
							 |-  H e. CH  | 
						
						
							| 2 | 
							
								1
							 | 
							pjhcli | 
							 |-  ( A e. ~H -> ( ( projh ` H ) ` A ) e. ~H )  | 
						
						
							| 3 | 
							
								
							 | 
							normcl | 
							 |-  ( ( ( projh ` H ) ` A ) e. ~H -> ( normh ` ( ( projh ` H ) ` A ) ) e. RR )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							syl | 
							 |-  ( A e. ~H -> ( normh ` ( ( projh ` H ) ` A ) ) e. RR )  | 
						
						
							| 5 | 
							
								4
							 | 
							sqge0d | 
							 |-  ( A e. ~H -> 0 <_ ( ( normh ` ( ( projh ` H ) ` A ) ) ^ 2 ) )  | 
						
						
							| 6 | 
							
								1
							 | 
							pjinormi | 
							 |-  ( A e. ~H -> ( ( ( projh ` H ) ` A ) .ih A ) = ( ( normh ` ( ( projh ` H ) ` A ) ) ^ 2 ) )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							breqtrrd | 
							 |-  ( A e. ~H -> 0 <_ ( ( ( projh ` H ) ` A ) .ih A ) )  |