Metamath Proof Explorer


Theorem pjini

Description: Membership of projection in an intersection. (Contributed by NM, 22-Apr-2001) (New usage is discouraged.)

Ref Expression
Hypotheses pjocin.1
|- G e. CH
pjocin.2
|- H e. CH
Assertion pjini
|- ( A e. ( G i^i H ) -> ( ( projh ` G ) ` A ) e. ( G i^i H ) )

Proof

Step Hyp Ref Expression
1 pjocin.1
 |-  G e. CH
2 pjocin.2
 |-  H e. CH
3 inss1
 |-  ( G i^i H ) C_ G
4 3 sseli
 |-  ( A e. ( G i^i H ) -> A e. G )
5 pjid
 |-  ( ( G e. CH /\ A e. G ) -> ( ( projh ` G ) ` A ) = A )
6 1 4 5 sylancr
 |-  ( A e. ( G i^i H ) -> ( ( projh ` G ) ` A ) = A )
7 6 eleq1d
 |-  ( A e. ( G i^i H ) -> ( ( ( projh ` G ) ` A ) e. ( G i^i H ) <-> A e. ( G i^i H ) ) )
8 7 ibir
 |-  ( A e. ( G i^i H ) -> ( ( projh ` G ) ` A ) e. ( G i^i H ) )