| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjadjt.1 |
|- H e. CH |
| 2 |
|
fveq2 |
|- ( A = if ( A e. ~H , A , 0h ) -> ( ( projh ` H ) ` A ) = ( ( projh ` H ) ` if ( A e. ~H , A , 0h ) ) ) |
| 3 |
|
id |
|- ( A = if ( A e. ~H , A , 0h ) -> A = if ( A e. ~H , A , 0h ) ) |
| 4 |
2 3
|
oveq12d |
|- ( A = if ( A e. ~H , A , 0h ) -> ( ( ( projh ` H ) ` A ) .ih A ) = ( ( ( projh ` H ) ` if ( A e. ~H , A , 0h ) ) .ih if ( A e. ~H , A , 0h ) ) ) |
| 5 |
|
2fveq3 |
|- ( A = if ( A e. ~H , A , 0h ) -> ( normh ` ( ( projh ` H ) ` A ) ) = ( normh ` ( ( projh ` H ) ` if ( A e. ~H , A , 0h ) ) ) ) |
| 6 |
5
|
oveq1d |
|- ( A = if ( A e. ~H , A , 0h ) -> ( ( normh ` ( ( projh ` H ) ` A ) ) ^ 2 ) = ( ( normh ` ( ( projh ` H ) ` if ( A e. ~H , A , 0h ) ) ) ^ 2 ) ) |
| 7 |
4 6
|
eqeq12d |
|- ( A = if ( A e. ~H , A , 0h ) -> ( ( ( ( projh ` H ) ` A ) .ih A ) = ( ( normh ` ( ( projh ` H ) ` A ) ) ^ 2 ) <-> ( ( ( projh ` H ) ` if ( A e. ~H , A , 0h ) ) .ih if ( A e. ~H , A , 0h ) ) = ( ( normh ` ( ( projh ` H ) ` if ( A e. ~H , A , 0h ) ) ) ^ 2 ) ) ) |
| 8 |
|
ifhvhv0 |
|- if ( A e. ~H , A , 0h ) e. ~H |
| 9 |
1 8
|
pjinormii |
|- ( ( ( projh ` H ) ` if ( A e. ~H , A , 0h ) ) .ih if ( A e. ~H , A , 0h ) ) = ( ( normh ` ( ( projh ` H ) ` if ( A e. ~H , A , 0h ) ) ) ^ 2 ) |
| 10 |
7 9
|
dedth |
|- ( A e. ~H -> ( ( ( projh ` H ) ` A ) .ih A ) = ( ( normh ` ( ( projh ` H ) ` A ) ) ^ 2 ) ) |