Metamath Proof Explorer


Theorem pjinormii

Description: The inner product of a projection and its argument is the square of the norm of the projection. Remark in Halmos p. 44. (Contributed by NM, 13-Aug-2000) (New usage is discouraged.)

Ref Expression
Hypotheses pjidm.1
|- H e. CH
pjidm.2
|- A e. ~H
Assertion pjinormii
|- ( ( ( projh ` H ) ` A ) .ih A ) = ( ( normh ` ( ( projh ` H ) ` A ) ) ^ 2 )

Proof

Step Hyp Ref Expression
1 pjidm.1
 |-  H e. CH
2 pjidm.2
 |-  A e. ~H
3 1 2 pjhclii
 |-  ( ( projh ` H ) ` A ) e. ~H
4 3 normsqi
 |-  ( ( normh ` ( ( projh ` H ) ` A ) ) ^ 2 ) = ( ( ( projh ` H ) ` A ) .ih ( ( projh ` H ) ` A ) )
5 1 3 2 pjadjii
 |-  ( ( ( projh ` H ) ` ( ( projh ` H ) ` A ) ) .ih A ) = ( ( ( projh ` H ) ` A ) .ih ( ( projh ` H ) ` A ) )
6 1 2 pjidmi
 |-  ( ( projh ` H ) ` ( ( projh ` H ) ` A ) ) = ( ( projh ` H ) ` A )
7 6 oveq1i
 |-  ( ( ( projh ` H ) ` ( ( projh ` H ) ` A ) ) .ih A ) = ( ( ( projh ` H ) ` A ) .ih A )
8 4 5 7 3eqtr2ri
 |-  ( ( ( projh ` H ) ` A ) .ih A ) = ( ( normh ` ( ( projh ` H ) ` A ) ) ^ 2 )