Metamath Proof Explorer


Theorem pjmfn

Description: Functionality of the projection function. (Contributed by NM, 24-Apr-2006) (New usage is discouraged.)

Ref Expression
Assertion pjmfn
|- projh Fn CH

Proof

Step Hyp Ref Expression
1 ax-hilex
 |-  ~H e. _V
2 1 mptex
 |-  ( x e. ~H |-> ( iota_ z e. h E. y e. ( _|_ ` h ) x = ( z +h y ) ) ) e. _V
3 df-pjh
 |-  projh = ( h e. CH |-> ( x e. ~H |-> ( iota_ z e. h E. y e. ( _|_ ` h ) x = ( z +h y ) ) ) )
4 2 3 fnmpti
 |-  projh Fn CH