Step |
Hyp |
Ref |
Expression |
1 |
|
pjidm.1 |
|- H e. CH |
2 |
|
pjidm.2 |
|- A e. ~H |
3 |
|
pjmul.3 |
|- C e. CC |
4 |
1 2
|
pjpji |
|- A = ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) |
5 |
4
|
oveq2i |
|- ( C .h A ) = ( C .h ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) ) |
6 |
1 2
|
pjhclii |
|- ( ( projh ` H ) ` A ) e. ~H |
7 |
1
|
choccli |
|- ( _|_ ` H ) e. CH |
8 |
7 2
|
pjhclii |
|- ( ( projh ` ( _|_ ` H ) ) ` A ) e. ~H |
9 |
3 6 8
|
hvdistr1i |
|- ( C .h ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) ) = ( ( C .h ( ( projh ` H ) ` A ) ) +h ( C .h ( ( projh ` ( _|_ ` H ) ) ` A ) ) ) |
10 |
5 9
|
eqtri |
|- ( C .h A ) = ( ( C .h ( ( projh ` H ) ` A ) ) +h ( C .h ( ( projh ` ( _|_ ` H ) ) ` A ) ) ) |
11 |
10
|
fveq2i |
|- ( ( projh ` H ) ` ( C .h A ) ) = ( ( projh ` H ) ` ( ( C .h ( ( projh ` H ) ` A ) ) +h ( C .h ( ( projh ` ( _|_ ` H ) ) ` A ) ) ) ) |
12 |
1
|
chshii |
|- H e. SH |
13 |
1 2
|
pjclii |
|- ( ( projh ` H ) ` A ) e. H |
14 |
|
shmulcl |
|- ( ( H e. SH /\ C e. CC /\ ( ( projh ` H ) ` A ) e. H ) -> ( C .h ( ( projh ` H ) ` A ) ) e. H ) |
15 |
12 3 13 14
|
mp3an |
|- ( C .h ( ( projh ` H ) ` A ) ) e. H |
16 |
7
|
chshii |
|- ( _|_ ` H ) e. SH |
17 |
7 2
|
pjclii |
|- ( ( projh ` ( _|_ ` H ) ) ` A ) e. ( _|_ ` H ) |
18 |
|
shmulcl |
|- ( ( ( _|_ ` H ) e. SH /\ C e. CC /\ ( ( projh ` ( _|_ ` H ) ) ` A ) e. ( _|_ ` H ) ) -> ( C .h ( ( projh ` ( _|_ ` H ) ) ` A ) ) e. ( _|_ ` H ) ) |
19 |
16 3 17 18
|
mp3an |
|- ( C .h ( ( projh ` ( _|_ ` H ) ) ` A ) ) e. ( _|_ ` H ) |
20 |
1
|
pjcompi |
|- ( ( ( C .h ( ( projh ` H ) ` A ) ) e. H /\ ( C .h ( ( projh ` ( _|_ ` H ) ) ` A ) ) e. ( _|_ ` H ) ) -> ( ( projh ` H ) ` ( ( C .h ( ( projh ` H ) ` A ) ) +h ( C .h ( ( projh ` ( _|_ ` H ) ) ` A ) ) ) ) = ( C .h ( ( projh ` H ) ` A ) ) ) |
21 |
15 19 20
|
mp2an |
|- ( ( projh ` H ) ` ( ( C .h ( ( projh ` H ) ` A ) ) +h ( C .h ( ( projh ` ( _|_ ` H ) ) ` A ) ) ) ) = ( C .h ( ( projh ` H ) ` A ) ) |
22 |
11 21
|
eqtri |
|- ( ( projh ` H ) ` ( C .h A ) ) = ( C .h ( ( projh ` H ) ` A ) ) |