| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjidm.1 |
|- H e. CH |
| 2 |
|
pjidm.2 |
|- A e. ~H |
| 3 |
|
pjmul.3 |
|- C e. CC |
| 4 |
1 2
|
pjpji |
|- A = ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) |
| 5 |
4
|
oveq2i |
|- ( C .h A ) = ( C .h ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) ) |
| 6 |
1 2
|
pjhclii |
|- ( ( projh ` H ) ` A ) e. ~H |
| 7 |
1
|
choccli |
|- ( _|_ ` H ) e. CH |
| 8 |
7 2
|
pjhclii |
|- ( ( projh ` ( _|_ ` H ) ) ` A ) e. ~H |
| 9 |
3 6 8
|
hvdistr1i |
|- ( C .h ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) ) = ( ( C .h ( ( projh ` H ) ` A ) ) +h ( C .h ( ( projh ` ( _|_ ` H ) ) ` A ) ) ) |
| 10 |
5 9
|
eqtri |
|- ( C .h A ) = ( ( C .h ( ( projh ` H ) ` A ) ) +h ( C .h ( ( projh ` ( _|_ ` H ) ) ` A ) ) ) |
| 11 |
10
|
fveq2i |
|- ( ( projh ` H ) ` ( C .h A ) ) = ( ( projh ` H ) ` ( ( C .h ( ( projh ` H ) ` A ) ) +h ( C .h ( ( projh ` ( _|_ ` H ) ) ` A ) ) ) ) |
| 12 |
1
|
chshii |
|- H e. SH |
| 13 |
1 2
|
pjclii |
|- ( ( projh ` H ) ` A ) e. H |
| 14 |
|
shmulcl |
|- ( ( H e. SH /\ C e. CC /\ ( ( projh ` H ) ` A ) e. H ) -> ( C .h ( ( projh ` H ) ` A ) ) e. H ) |
| 15 |
12 3 13 14
|
mp3an |
|- ( C .h ( ( projh ` H ) ` A ) ) e. H |
| 16 |
7
|
chshii |
|- ( _|_ ` H ) e. SH |
| 17 |
7 2
|
pjclii |
|- ( ( projh ` ( _|_ ` H ) ) ` A ) e. ( _|_ ` H ) |
| 18 |
|
shmulcl |
|- ( ( ( _|_ ` H ) e. SH /\ C e. CC /\ ( ( projh ` ( _|_ ` H ) ) ` A ) e. ( _|_ ` H ) ) -> ( C .h ( ( projh ` ( _|_ ` H ) ) ` A ) ) e. ( _|_ ` H ) ) |
| 19 |
16 3 17 18
|
mp3an |
|- ( C .h ( ( projh ` ( _|_ ` H ) ) ` A ) ) e. ( _|_ ` H ) |
| 20 |
1
|
pjcompi |
|- ( ( ( C .h ( ( projh ` H ) ` A ) ) e. H /\ ( C .h ( ( projh ` ( _|_ ` H ) ) ` A ) ) e. ( _|_ ` H ) ) -> ( ( projh ` H ) ` ( ( C .h ( ( projh ` H ) ` A ) ) +h ( C .h ( ( projh ` ( _|_ ` H ) ) ` A ) ) ) ) = ( C .h ( ( projh ` H ) ` A ) ) ) |
| 21 |
15 19 20
|
mp2an |
|- ( ( projh ` H ) ` ( ( C .h ( ( projh ` H ) ` A ) ) +h ( C .h ( ( projh ` ( _|_ ` H ) ) ` A ) ) ) ) = ( C .h ( ( projh ` H ) ` A ) ) |
| 22 |
11 21
|
eqtri |
|- ( ( projh ` H ) ` ( C .h A ) ) = ( C .h ( ( projh ` H ) ` A ) ) |