| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjnorm.1 |
|- H e. CH |
| 2 |
|
pjnorm.2 |
|- A e. ~H |
| 3 |
1 2
|
pjhclii |
|- ( ( projh ` H ) ` A ) e. ~H |
| 4 |
1
|
choccli |
|- ( _|_ ` H ) e. CH |
| 5 |
4 2
|
pjhclii |
|- ( ( projh ` ( _|_ ` H ) ) ` A ) e. ~H |
| 6 |
3 5
|
pm3.2i |
|- ( ( ( projh ` H ) ` A ) e. ~H /\ ( ( projh ` ( _|_ ` H ) ) ` A ) e. ~H ) |
| 7 |
2 2
|
pjorthi |
|- ( H e. CH -> ( ( ( projh ` H ) ` A ) .ih ( ( projh ` ( _|_ ` H ) ) ` A ) ) = 0 ) |
| 8 |
1 7
|
ax-mp |
|- ( ( ( projh ` H ) ` A ) .ih ( ( projh ` ( _|_ ` H ) ) ` A ) ) = 0 |
| 9 |
|
normpyc |
|- ( ( ( ( projh ` H ) ` A ) e. ~H /\ ( ( projh ` ( _|_ ` H ) ) ` A ) e. ~H ) -> ( ( ( ( projh ` H ) ` A ) .ih ( ( projh ` ( _|_ ` H ) ) ` A ) ) = 0 -> ( normh ` ( ( projh ` H ) ` A ) ) <_ ( normh ` ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) ) ) ) |
| 10 |
6 8 9
|
mp2 |
|- ( normh ` ( ( projh ` H ) ` A ) ) <_ ( normh ` ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) ) |
| 11 |
1 2
|
pjpji |
|- A = ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) |
| 12 |
11
|
fveq2i |
|- ( normh ` A ) = ( normh ` ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) ) |
| 13 |
10 12
|
breqtrri |
|- ( normh ` ( ( projh ` H ) ` A ) ) <_ ( normh ` A ) |