| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjop.1 |
|- H e. CH |
| 2 |
|
pjop.2 |
|- A e. ~H |
| 3 |
1 2
|
pjopi |
|- ( ( projh ` ( _|_ ` H ) ) ` A ) = ( A -h ( ( projh ` H ) ` A ) ) |
| 4 |
1
|
chshii |
|- H e. SH |
| 5 |
1 2
|
pjclii |
|- ( ( projh ` H ) ` A ) e. H |
| 6 |
|
shsubcl |
|- ( ( H e. SH /\ A e. H /\ ( ( projh ` H ) ` A ) e. H ) -> ( A -h ( ( projh ` H ) ` A ) ) e. H ) |
| 7 |
4 5 6
|
mp3an13 |
|- ( A e. H -> ( A -h ( ( projh ` H ) ` A ) ) e. H ) |
| 8 |
3 7
|
eqeltrid |
|- ( A e. H -> ( ( projh ` ( _|_ ` H ) ) ` A ) e. H ) |
| 9 |
1
|
choccli |
|- ( _|_ ` H ) e. CH |
| 10 |
9 2
|
pjclii |
|- ( ( projh ` ( _|_ ` H ) ) ` A ) e. ( _|_ ` H ) |
| 11 |
8 10
|
jctir |
|- ( A e. H -> ( ( ( projh ` ( _|_ ` H ) ) ` A ) e. H /\ ( ( projh ` ( _|_ ` H ) ) ` A ) e. ( _|_ ` H ) ) ) |
| 12 |
|
elin |
|- ( ( ( projh ` ( _|_ ` H ) ) ` A ) e. ( H i^i ( _|_ ` H ) ) <-> ( ( ( projh ` ( _|_ ` H ) ) ` A ) e. H /\ ( ( projh ` ( _|_ ` H ) ) ` A ) e. ( _|_ ` H ) ) ) |
| 13 |
11 12
|
sylibr |
|- ( A e. H -> ( ( projh ` ( _|_ ` H ) ) ` A ) e. ( H i^i ( _|_ ` H ) ) ) |
| 14 |
|
ocin |
|- ( H e. SH -> ( H i^i ( _|_ ` H ) ) = 0H ) |
| 15 |
4 14
|
ax-mp |
|- ( H i^i ( _|_ ` H ) ) = 0H |
| 16 |
13 15
|
eleqtrdi |
|- ( A e. H -> ( ( projh ` ( _|_ ` H ) ) ` A ) e. 0H ) |
| 17 |
|
elch0 |
|- ( ( ( projh ` ( _|_ ` H ) ) ` A ) e. 0H <-> ( ( projh ` ( _|_ ` H ) ) ` A ) = 0h ) |
| 18 |
16 17
|
sylib |
|- ( A e. H -> ( ( projh ` ( _|_ ` H ) ) ` A ) = 0h ) |
| 19 |
1 2
|
pjpji |
|- A = ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) |
| 20 |
|
oveq2 |
|- ( ( ( projh ` ( _|_ ` H ) ) ` A ) = 0h -> ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) = ( ( ( projh ` H ) ` A ) +h 0h ) ) |
| 21 |
19 20
|
eqtrid |
|- ( ( ( projh ` ( _|_ ` H ) ) ` A ) = 0h -> A = ( ( ( projh ` H ) ` A ) +h 0h ) ) |
| 22 |
1 2
|
pjhclii |
|- ( ( projh ` H ) ` A ) e. ~H |
| 23 |
|
ax-hvaddid |
|- ( ( ( projh ` H ) ` A ) e. ~H -> ( ( ( projh ` H ) ` A ) +h 0h ) = ( ( projh ` H ) ` A ) ) |
| 24 |
22 23
|
ax-mp |
|- ( ( ( projh ` H ) ` A ) +h 0h ) = ( ( projh ` H ) ` A ) |
| 25 |
21 24
|
eqtrdi |
|- ( ( ( projh ` ( _|_ ` H ) ) ` A ) = 0h -> A = ( ( projh ` H ) ` A ) ) |
| 26 |
25 5
|
eqeltrdi |
|- ( ( ( projh ` ( _|_ ` H ) ) ` A ) = 0h -> A e. H ) |
| 27 |
18 26
|
impbii |
|- ( A e. H <-> ( ( projh ` ( _|_ ` H ) ) ` A ) = 0h ) |