Step |
Hyp |
Ref |
Expression |
1 |
|
pjocin.1 |
|- G e. CH |
2 |
|
pjocin.2 |
|- H e. CH |
3 |
1 2
|
chincli |
|- ( G i^i H ) e. CH |
4 |
3
|
choccli |
|- ( _|_ ` ( G i^i H ) ) e. CH |
5 |
4
|
cheli |
|- ( A e. ( _|_ ` ( G i^i H ) ) -> A e. ~H ) |
6 |
|
pjpo |
|- ( ( G e. CH /\ A e. ~H ) -> ( ( projh ` G ) ` A ) = ( A -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) ) |
7 |
1 5 6
|
sylancr |
|- ( A e. ( _|_ ` ( G i^i H ) ) -> ( ( projh ` G ) ` A ) = ( A -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) ) |
8 |
|
inss1 |
|- ( G i^i H ) C_ G |
9 |
3 1
|
chsscon3i |
|- ( ( G i^i H ) C_ G <-> ( _|_ ` G ) C_ ( _|_ ` ( G i^i H ) ) ) |
10 |
8 9
|
mpbi |
|- ( _|_ ` G ) C_ ( _|_ ` ( G i^i H ) ) |
11 |
1
|
choccli |
|- ( _|_ ` G ) e. CH |
12 |
11
|
pjcli |
|- ( A e. ~H -> ( ( projh ` ( _|_ ` G ) ) ` A ) e. ( _|_ ` G ) ) |
13 |
5 12
|
syl |
|- ( A e. ( _|_ ` ( G i^i H ) ) -> ( ( projh ` ( _|_ ` G ) ) ` A ) e. ( _|_ ` G ) ) |
14 |
10 13
|
sselid |
|- ( A e. ( _|_ ` ( G i^i H ) ) -> ( ( projh ` ( _|_ ` G ) ) ` A ) e. ( _|_ ` ( G i^i H ) ) ) |
15 |
4
|
chshii |
|- ( _|_ ` ( G i^i H ) ) e. SH |
16 |
|
shsubcl |
|- ( ( ( _|_ ` ( G i^i H ) ) e. SH /\ A e. ( _|_ ` ( G i^i H ) ) /\ ( ( projh ` ( _|_ ` G ) ) ` A ) e. ( _|_ ` ( G i^i H ) ) ) -> ( A -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) e. ( _|_ ` ( G i^i H ) ) ) |
17 |
15 16
|
mp3an1 |
|- ( ( A e. ( _|_ ` ( G i^i H ) ) /\ ( ( projh ` ( _|_ ` G ) ) ` A ) e. ( _|_ ` ( G i^i H ) ) ) -> ( A -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) e. ( _|_ ` ( G i^i H ) ) ) |
18 |
14 17
|
mpdan |
|- ( A e. ( _|_ ` ( G i^i H ) ) -> ( A -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) e. ( _|_ ` ( G i^i H ) ) ) |
19 |
7 18
|
eqeltrd |
|- ( A e. ( _|_ ` ( G i^i H ) ) -> ( ( projh ` G ) ` A ) e. ( _|_ ` ( G i^i H ) ) ) |