Step |
Hyp |
Ref |
Expression |
1 |
|
choccl |
|- ( H e. CH -> ( _|_ ` H ) e. CH ) |
2 |
|
chss |
|- ( ( _|_ ` H ) e. CH -> ( _|_ ` H ) C_ ~H ) |
3 |
1 2
|
syl |
|- ( H e. CH -> ( _|_ ` H ) C_ ~H ) |
4 |
|
sseqin2 |
|- ( ( _|_ ` H ) C_ ~H <-> ( ~H i^i ( _|_ ` H ) ) = ( _|_ ` H ) ) |
5 |
3 4
|
sylib |
|- ( H e. CH -> ( ~H i^i ( _|_ ` H ) ) = ( _|_ ` H ) ) |
6 |
|
pjoc2 |
|- ( ( H e. CH /\ x e. ~H ) -> ( x e. ( _|_ ` H ) <-> ( ( projh ` H ) ` x ) = 0h ) ) |
7 |
6
|
rabbi2dva |
|- ( H e. CH -> ( ~H i^i ( _|_ ` H ) ) = { x e. ~H | ( ( projh ` H ) ` x ) = 0h } ) |
8 |
5 7
|
eqtr3d |
|- ( H e. CH -> ( _|_ ` H ) = { x e. ~H | ( ( projh ` H ) ` x ) = 0h } ) |