Step |
Hyp |
Ref |
Expression |
1 |
|
pjrn |
|- ( G e. CH -> ran ( projh ` G ) = G ) |
2 |
1
|
adantr |
|- ( ( G e. CH /\ H e. CH ) -> ran ( projh ` G ) = G ) |
3 |
|
pjrn |
|- ( H e. CH -> ran ( projh ` H ) = H ) |
4 |
3
|
fveq2d |
|- ( H e. CH -> ( _|_ ` ran ( projh ` H ) ) = ( _|_ ` H ) ) |
5 |
4
|
adantl |
|- ( ( G e. CH /\ H e. CH ) -> ( _|_ ` ran ( projh ` H ) ) = ( _|_ ` H ) ) |
6 |
2 5
|
sseq12d |
|- ( ( G e. CH /\ H e. CH ) -> ( ran ( projh ` G ) C_ ( _|_ ` ran ( projh ` H ) ) <-> G C_ ( _|_ ` H ) ) ) |
7 |
6
|
biimpar |
|- ( ( ( G e. CH /\ H e. CH ) /\ G C_ ( _|_ ` H ) ) -> ran ( projh ` G ) C_ ( _|_ ` ran ( projh ` H ) ) ) |
8 |
7
|
3adantl3 |
|- ( ( ( G e. CH /\ H e. CH /\ A e. ~H ) /\ G C_ ( _|_ ` H ) ) -> ran ( projh ` G ) C_ ( _|_ ` ran ( projh ` H ) ) ) |
9 |
|
id |
|- ( H e. CH -> H e. CH ) |
10 |
3 9
|
eqeltrd |
|- ( H e. CH -> ran ( projh ` H ) e. CH ) |
11 |
|
chsh |
|- ( ran ( projh ` H ) e. CH -> ran ( projh ` H ) e. SH ) |
12 |
10 11
|
syl |
|- ( H e. CH -> ran ( projh ` H ) e. SH ) |
13 |
12
|
3ad2ant2 |
|- ( ( G e. CH /\ H e. CH /\ A e. ~H ) -> ran ( projh ` H ) e. SH ) |
14 |
13
|
adantr |
|- ( ( ( G e. CH /\ H e. CH /\ A e. ~H ) /\ ran ( projh ` G ) C_ ( _|_ ` ran ( projh ` H ) ) ) -> ran ( projh ` H ) e. SH ) |
15 |
|
simpr |
|- ( ( ( G e. CH /\ H e. CH /\ A e. ~H ) /\ ran ( projh ` G ) C_ ( _|_ ` ran ( projh ` H ) ) ) -> ran ( projh ` G ) C_ ( _|_ ` ran ( projh ` H ) ) ) |
16 |
|
pjfn |
|- ( G e. CH -> ( projh ` G ) Fn ~H ) |
17 |
|
fnfvelrn |
|- ( ( ( projh ` G ) Fn ~H /\ A e. ~H ) -> ( ( projh ` G ) ` A ) e. ran ( projh ` G ) ) |
18 |
16 17
|
sylan |
|- ( ( G e. CH /\ A e. ~H ) -> ( ( projh ` G ) ` A ) e. ran ( projh ` G ) ) |
19 |
18
|
3adant2 |
|- ( ( G e. CH /\ H e. CH /\ A e. ~H ) -> ( ( projh ` G ) ` A ) e. ran ( projh ` G ) ) |
20 |
|
pjfn |
|- ( H e. CH -> ( projh ` H ) Fn ~H ) |
21 |
|
fnfvelrn |
|- ( ( ( projh ` H ) Fn ~H /\ A e. ~H ) -> ( ( projh ` H ) ` A ) e. ran ( projh ` H ) ) |
22 |
20 21
|
sylan |
|- ( ( H e. CH /\ A e. ~H ) -> ( ( projh ` H ) ` A ) e. ran ( projh ` H ) ) |
23 |
22
|
3adant1 |
|- ( ( G e. CH /\ H e. CH /\ A e. ~H ) -> ( ( projh ` H ) ` A ) e. ran ( projh ` H ) ) |
24 |
19 23
|
jca |
|- ( ( G e. CH /\ H e. CH /\ A e. ~H ) -> ( ( ( projh ` G ) ` A ) e. ran ( projh ` G ) /\ ( ( projh ` H ) ` A ) e. ran ( projh ` H ) ) ) |
25 |
24
|
adantr |
|- ( ( ( G e. CH /\ H e. CH /\ A e. ~H ) /\ ran ( projh ` G ) C_ ( _|_ ` ran ( projh ` H ) ) ) -> ( ( ( projh ` G ) ` A ) e. ran ( projh ` G ) /\ ( ( projh ` H ) ` A ) e. ran ( projh ` H ) ) ) |
26 |
|
shorth |
|- ( ran ( projh ` H ) e. SH -> ( ran ( projh ` G ) C_ ( _|_ ` ran ( projh ` H ) ) -> ( ( ( ( projh ` G ) ` A ) e. ran ( projh ` G ) /\ ( ( projh ` H ) ` A ) e. ran ( projh ` H ) ) -> ( ( ( projh ` G ) ` A ) .ih ( ( projh ` H ) ` A ) ) = 0 ) ) ) |
27 |
14 15 25 26
|
syl3c |
|- ( ( ( G e. CH /\ H e. CH /\ A e. ~H ) /\ ran ( projh ` G ) C_ ( _|_ ` ran ( projh ` H ) ) ) -> ( ( ( projh ` G ) ` A ) .ih ( ( projh ` H ) ` A ) ) = 0 ) |
28 |
8 27
|
syldan |
|- ( ( ( G e. CH /\ H e. CH /\ A e. ~H ) /\ G C_ ( _|_ ` H ) ) -> ( ( ( projh ` G ) ` A ) .ih ( ( projh ` H ) ` A ) ) = 0 ) |