Metamath Proof Explorer


Theorem pjoi0i

Description: The inner product of projections on orthogonal subspaces vanishes. (Contributed by NM, 1-Nov-1999) (New usage is discouraged.)

Ref Expression
Hypotheses pjoi0.1
|- G e. CH
pjoi0.2
|- H e. CH
pjoi0.3
|- A e. ~H
Assertion pjoi0i
|- ( G C_ ( _|_ ` H ) -> ( ( ( projh ` G ) ` A ) .ih ( ( projh ` H ) ` A ) ) = 0 )

Proof

Step Hyp Ref Expression
1 pjoi0.1
 |-  G e. CH
2 pjoi0.2
 |-  H e. CH
3 pjoi0.3
 |-  A e. ~H
4 1 2 3 3pm3.2i
 |-  ( G e. CH /\ H e. CH /\ A e. ~H )
5 pjoi0
 |-  ( ( ( G e. CH /\ H e. CH /\ A e. ~H ) /\ G C_ ( _|_ ` H ) ) -> ( ( ( projh ` G ) ` A ) .ih ( ( projh ` H ) ` A ) ) = 0 )
6 4 5 mpan
 |-  ( G C_ ( _|_ ` H ) -> ( ( ( projh ` G ) ` A ) .ih ( ( projh ` H ) ` A ) ) = 0 )