Description: The inner product of projections on orthogonal subspaces vanishes. (Contributed by NM, 1-Nov-1999) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pjoi0.1 | |- G e. CH |
|
pjoi0.2 | |- H e. CH |
||
pjoi0.3 | |- A e. ~H |
||
Assertion | pjoi0i | |- ( G C_ ( _|_ ` H ) -> ( ( ( projh ` G ) ` A ) .ih ( ( projh ` H ) ` A ) ) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pjoi0.1 | |- G e. CH |
|
2 | pjoi0.2 | |- H e. CH |
|
3 | pjoi0.3 | |- A e. ~H |
|
4 | 1 2 3 | 3pm3.2i | |- ( G e. CH /\ H e. CH /\ A e. ~H ) |
5 | pjoi0 | |- ( ( ( G e. CH /\ H e. CH /\ A e. ~H ) /\ G C_ ( _|_ ` H ) ) -> ( ( ( projh ` G ) ` A ) .ih ( ( projh ` H ) ` A ) ) = 0 ) |
|
6 | 4 5 | mpan | |- ( G C_ ( _|_ ` H ) -> ( ( ( projh ` G ) ` A ) .ih ( ( projh ` H ) ` A ) ) = 0 ) |