Step |
Hyp |
Ref |
Expression |
1 |
|
pjoml2.1 |
|- A e. CH |
2 |
|
pjoml2.2 |
|- B e. CH |
3 |
1
|
choccli |
|- ( _|_ ` A ) e. CH |
4 |
2
|
choccli |
|- ( _|_ ` B ) e. CH |
5 |
3 4
|
pjoml2i |
|- ( ( _|_ ` A ) C_ ( _|_ ` B ) -> ( ( _|_ ` A ) vH ( ( _|_ ` ( _|_ ` A ) ) i^i ( _|_ ` B ) ) ) = ( _|_ ` B ) ) |
6 |
2 1
|
chsscon3i |
|- ( B C_ A <-> ( _|_ ` A ) C_ ( _|_ ` B ) ) |
7 |
|
eqcom |
|- ( ( _|_ ` ( ( _|_ ` A ) vH ( ( _|_ ` ( _|_ ` A ) ) i^i ( _|_ ` B ) ) ) ) = B <-> B = ( _|_ ` ( ( _|_ ` A ) vH ( ( _|_ ` ( _|_ ` A ) ) i^i ( _|_ ` B ) ) ) ) ) |
8 |
3
|
choccli |
|- ( _|_ ` ( _|_ ` A ) ) e. CH |
9 |
8 4
|
chincli |
|- ( ( _|_ ` ( _|_ ` A ) ) i^i ( _|_ ` B ) ) e. CH |
10 |
1 9
|
chdmj2i |
|- ( _|_ ` ( ( _|_ ` A ) vH ( ( _|_ ` ( _|_ ` A ) ) i^i ( _|_ ` B ) ) ) ) = ( A i^i ( _|_ ` ( ( _|_ ` ( _|_ ` A ) ) i^i ( _|_ ` B ) ) ) ) |
11 |
3 2
|
chdmm4i |
|- ( _|_ ` ( ( _|_ ` ( _|_ ` A ) ) i^i ( _|_ ` B ) ) ) = ( ( _|_ ` A ) vH B ) |
12 |
11
|
ineq2i |
|- ( A i^i ( _|_ ` ( ( _|_ ` ( _|_ ` A ) ) i^i ( _|_ ` B ) ) ) ) = ( A i^i ( ( _|_ ` A ) vH B ) ) |
13 |
10 12
|
eqtri |
|- ( _|_ ` ( ( _|_ ` A ) vH ( ( _|_ ` ( _|_ ` A ) ) i^i ( _|_ ` B ) ) ) ) = ( A i^i ( ( _|_ ` A ) vH B ) ) |
14 |
13
|
eqeq1i |
|- ( ( _|_ ` ( ( _|_ ` A ) vH ( ( _|_ ` ( _|_ ` A ) ) i^i ( _|_ ` B ) ) ) ) = B <-> ( A i^i ( ( _|_ ` A ) vH B ) ) = B ) |
15 |
3 9
|
chjcli |
|- ( ( _|_ ` A ) vH ( ( _|_ ` ( _|_ ` A ) ) i^i ( _|_ ` B ) ) ) e. CH |
16 |
2 15
|
chcon2i |
|- ( B = ( _|_ ` ( ( _|_ ` A ) vH ( ( _|_ ` ( _|_ ` A ) ) i^i ( _|_ ` B ) ) ) ) <-> ( ( _|_ ` A ) vH ( ( _|_ ` ( _|_ ` A ) ) i^i ( _|_ ` B ) ) ) = ( _|_ ` B ) ) |
17 |
7 14 16
|
3bitr3i |
|- ( ( A i^i ( ( _|_ ` A ) vH B ) ) = B <-> ( ( _|_ ` A ) vH ( ( _|_ ` ( _|_ ` A ) ) i^i ( _|_ ` B ) ) ) = ( _|_ ` B ) ) |
18 |
5 6 17
|
3imtr4i |
|- ( B C_ A -> ( A i^i ( ( _|_ ` A ) vH B ) ) = B ) |