Step |
Hyp |
Ref |
Expression |
1 |
|
pjoml2.1 |
|- A e. CH |
2 |
|
pjoml2.2 |
|- B e. CH |
3 |
|
inss1 |
|- ( B i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) C_ B |
4 |
1
|
choccli |
|- ( _|_ ` A ) e. CH |
5 |
2
|
choccli |
|- ( _|_ ` B ) e. CH |
6 |
4 5
|
chjcli |
|- ( ( _|_ ` A ) vH ( _|_ ` B ) ) e. CH |
7 |
2 6
|
chincli |
|- ( B i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) e. CH |
8 |
7 2 1
|
chlej2i |
|- ( ( B i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) C_ B -> ( A vH ( B i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) ) C_ ( A vH B ) ) |
9 |
3 8
|
ax-mp |
|- ( A vH ( B i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) ) C_ ( A vH B ) |
10 |
1 7
|
chub1i |
|- A C_ ( A vH ( B i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) ) |
11 |
1 2
|
chdmm1i |
|- ( _|_ ` ( A i^i B ) ) = ( ( _|_ ` A ) vH ( _|_ ` B ) ) |
12 |
11
|
ineq1i |
|- ( ( _|_ ` ( A i^i B ) ) i^i B ) = ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i B ) |
13 |
|
incom |
|- ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i B ) = ( B i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) |
14 |
12 13
|
eqtri |
|- ( ( _|_ ` ( A i^i B ) ) i^i B ) = ( B i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) |
15 |
14
|
oveq2i |
|- ( ( A i^i B ) vH ( ( _|_ ` ( A i^i B ) ) i^i B ) ) = ( ( A i^i B ) vH ( B i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) ) |
16 |
|
inss2 |
|- ( A i^i B ) C_ B |
17 |
1 2
|
chincli |
|- ( A i^i B ) e. CH |
18 |
17 2
|
pjoml2i |
|- ( ( A i^i B ) C_ B -> ( ( A i^i B ) vH ( ( _|_ ` ( A i^i B ) ) i^i B ) ) = B ) |
19 |
16 18
|
ax-mp |
|- ( ( A i^i B ) vH ( ( _|_ ` ( A i^i B ) ) i^i B ) ) = B |
20 |
15 19
|
eqtr3i |
|- ( ( A i^i B ) vH ( B i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) ) = B |
21 |
|
inss1 |
|- ( A i^i B ) C_ A |
22 |
17 1 7
|
chlej1i |
|- ( ( A i^i B ) C_ A -> ( ( A i^i B ) vH ( B i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) ) C_ ( A vH ( B i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) ) ) |
23 |
21 22
|
ax-mp |
|- ( ( A i^i B ) vH ( B i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) ) C_ ( A vH ( B i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) ) |
24 |
20 23
|
eqsstrri |
|- B C_ ( A vH ( B i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) ) |
25 |
1 7
|
chjcli |
|- ( A vH ( B i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) ) e. CH |
26 |
1 2 25
|
chlubii |
|- ( ( A C_ ( A vH ( B i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) ) /\ B C_ ( A vH ( B i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) ) ) -> ( A vH B ) C_ ( A vH ( B i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) ) ) |
27 |
10 24 26
|
mp2an |
|- ( A vH B ) C_ ( A vH ( B i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) ) |
28 |
9 27
|
eqssi |
|- ( A vH ( B i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) ) = ( A vH B ) |