Description: The orthomodular law. Remark in Kalmbach p. 22. (Contributed by NM, 12-Jun-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pjoml5 | |- ( ( A e. CH /\ B e. CH ) -> ( A vH ( ( _|_ ` A ) i^i ( A vH B ) ) ) = ( A vH B ) )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpl | |- ( ( A e. CH /\ B e. CH ) -> A e. CH )  | 
						|
| 2 | chjcl | |- ( ( A e. CH /\ B e. CH ) -> ( A vH B ) e. CH )  | 
						|
| 3 | chub1 | |- ( ( A e. CH /\ B e. CH ) -> A C_ ( A vH B ) )  | 
						|
| 4 | pjoml2 | |- ( ( A e. CH /\ ( A vH B ) e. CH /\ A C_ ( A vH B ) ) -> ( A vH ( ( _|_ ` A ) i^i ( A vH B ) ) ) = ( A vH B ) )  | 
						|
| 5 | 1 2 3 4 | syl3anc | |- ( ( A e. CH /\ B e. CH ) -> ( A vH ( ( _|_ ` A ) i^i ( A vH B ) ) ) = ( A vH B ) )  |