Description: The orthomodular law. Remark in Kalmbach p. 22. (Contributed by NM, 12-Jun-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | pjoml5 | |- ( ( A e. CH /\ B e. CH ) -> ( A vH ( ( _|_ ` A ) i^i ( A vH B ) ) ) = ( A vH B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl | |- ( ( A e. CH /\ B e. CH ) -> A e. CH ) |
|
2 | chjcl | |- ( ( A e. CH /\ B e. CH ) -> ( A vH B ) e. CH ) |
|
3 | chub1 | |- ( ( A e. CH /\ B e. CH ) -> A C_ ( A vH B ) ) |
|
4 | pjoml2 | |- ( ( A e. CH /\ ( A vH B ) e. CH /\ A C_ ( A vH B ) ) -> ( A vH ( ( _|_ ` A ) i^i ( A vH B ) ) ) = ( A vH B ) ) |
|
5 | 1 2 3 4 | syl3anc | |- ( ( A e. CH /\ B e. CH ) -> ( A vH ( ( _|_ ` A ) i^i ( A vH B ) ) ) = ( A vH B ) ) |