Metamath Proof Explorer


Theorem pjoml5

Description: The orthomodular law. Remark in Kalmbach p. 22. (Contributed by NM, 12-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion pjoml5
|- ( ( A e. CH /\ B e. CH ) -> ( A vH ( ( _|_ ` A ) i^i ( A vH B ) ) ) = ( A vH B ) )

Proof

Step Hyp Ref Expression
1 simpl
 |-  ( ( A e. CH /\ B e. CH ) -> A e. CH )
2 chjcl
 |-  ( ( A e. CH /\ B e. CH ) -> ( A vH B ) e. CH )
3 chub1
 |-  ( ( A e. CH /\ B e. CH ) -> A C_ ( A vH B ) )
4 pjoml2
 |-  ( ( A e. CH /\ ( A vH B ) e. CH /\ A C_ ( A vH B ) ) -> ( A vH ( ( _|_ ` A ) i^i ( A vH B ) ) ) = ( A vH B ) )
5 1 2 3 4 syl3anc
 |-  ( ( A e. CH /\ B e. CH ) -> ( A vH ( ( _|_ ` A ) i^i ( A vH B ) ) ) = ( A vH B ) )