Step |
Hyp |
Ref |
Expression |
1 |
|
pjoml2.1 |
|- A e. CH |
2 |
|
pjoml2.2 |
|- B e. CH |
3 |
1
|
choccli |
|- ( _|_ ` A ) e. CH |
4 |
3 2
|
chincli |
|- ( ( _|_ ` A ) i^i B ) e. CH |
5 |
1 2
|
pjoml2i |
|- ( A C_ B -> ( A vH ( ( _|_ ` A ) i^i B ) ) = B ) |
6 |
2
|
choccli |
|- ( _|_ ` B ) e. CH |
7 |
1 6
|
chub1i |
|- A C_ ( A vH ( _|_ ` B ) ) |
8 |
1 2
|
chdmm2i |
|- ( _|_ ` ( ( _|_ ` A ) i^i B ) ) = ( A vH ( _|_ ` B ) ) |
9 |
7 8
|
sseqtrri |
|- A C_ ( _|_ ` ( ( _|_ ` A ) i^i B ) ) |
10 |
5 9
|
jctil |
|- ( A C_ B -> ( A C_ ( _|_ ` ( ( _|_ ` A ) i^i B ) ) /\ ( A vH ( ( _|_ ` A ) i^i B ) ) = B ) ) |
11 |
|
fveq2 |
|- ( x = ( ( _|_ ` A ) i^i B ) -> ( _|_ ` x ) = ( _|_ ` ( ( _|_ ` A ) i^i B ) ) ) |
12 |
11
|
sseq2d |
|- ( x = ( ( _|_ ` A ) i^i B ) -> ( A C_ ( _|_ ` x ) <-> A C_ ( _|_ ` ( ( _|_ ` A ) i^i B ) ) ) ) |
13 |
|
oveq2 |
|- ( x = ( ( _|_ ` A ) i^i B ) -> ( A vH x ) = ( A vH ( ( _|_ ` A ) i^i B ) ) ) |
14 |
13
|
eqeq1d |
|- ( x = ( ( _|_ ` A ) i^i B ) -> ( ( A vH x ) = B <-> ( A vH ( ( _|_ ` A ) i^i B ) ) = B ) ) |
15 |
12 14
|
anbi12d |
|- ( x = ( ( _|_ ` A ) i^i B ) -> ( ( A C_ ( _|_ ` x ) /\ ( A vH x ) = B ) <-> ( A C_ ( _|_ ` ( ( _|_ ` A ) i^i B ) ) /\ ( A vH ( ( _|_ ` A ) i^i B ) ) = B ) ) ) |
16 |
15
|
rspcev |
|- ( ( ( ( _|_ ` A ) i^i B ) e. CH /\ ( A C_ ( _|_ ` ( ( _|_ ` A ) i^i B ) ) /\ ( A vH ( ( _|_ ` A ) i^i B ) ) = B ) ) -> E. x e. CH ( A C_ ( _|_ ` x ) /\ ( A vH x ) = B ) ) |
17 |
4 10 16
|
sylancr |
|- ( A C_ B -> E. x e. CH ( A C_ ( _|_ ` x ) /\ ( A vH x ) = B ) ) |