Step |
Hyp |
Ref |
Expression |
1 |
|
pjoi0.1 |
|- G e. CH |
2 |
|
pjoi0.2 |
|- H e. CH |
3 |
|
pjoi0.3 |
|- A e. ~H |
4 |
1 2 3
|
pjoi0i |
|- ( G C_ ( _|_ ` H ) -> ( ( ( projh ` G ) ` A ) .ih ( ( projh ` H ) ` A ) ) = 0 ) |
5 |
1 3
|
pjhclii |
|- ( ( projh ` G ) ` A ) e. ~H |
6 |
2 3
|
pjhclii |
|- ( ( projh ` H ) ` A ) e. ~H |
7 |
5 6
|
normpythi |
|- ( ( ( ( projh ` G ) ` A ) .ih ( ( projh ` H ) ` A ) ) = 0 -> ( ( normh ` ( ( ( projh ` G ) ` A ) +h ( ( projh ` H ) ` A ) ) ) ^ 2 ) = ( ( ( normh ` ( ( projh ` G ) ` A ) ) ^ 2 ) + ( ( normh ` ( ( projh ` H ) ` A ) ) ^ 2 ) ) ) |
8 |
4 7
|
syl |
|- ( G C_ ( _|_ ` H ) -> ( ( normh ` ( ( ( projh ` G ) ` A ) +h ( ( projh ` H ) ` A ) ) ) ^ 2 ) = ( ( ( normh ` ( ( projh ` G ) ` A ) ) ^ 2 ) + ( ( normh ` ( ( projh ` H ) ` A ) ) ^ 2 ) ) ) |