| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pjorth.1 |  |-  A e. ~H | 
						
							| 2 |  | pjorth.2 |  |-  B e. ~H | 
						
							| 3 |  | chsh |  |-  ( H e. CH -> H e. SH ) | 
						
							| 4 |  | axpjcl |  |-  ( ( H e. CH /\ A e. ~H ) -> ( ( projh ` H ) ` A ) e. H ) | 
						
							| 5 | 1 4 | mpan2 |  |-  ( H e. CH -> ( ( projh ` H ) ` A ) e. H ) | 
						
							| 6 |  | choccl |  |-  ( H e. CH -> ( _|_ ` H ) e. CH ) | 
						
							| 7 |  | axpjcl |  |-  ( ( ( _|_ ` H ) e. CH /\ B e. ~H ) -> ( ( projh ` ( _|_ ` H ) ) ` B ) e. ( _|_ ` H ) ) | 
						
							| 8 | 6 2 7 | sylancl |  |-  ( H e. CH -> ( ( projh ` ( _|_ ` H ) ) ` B ) e. ( _|_ ` H ) ) | 
						
							| 9 | 5 8 | jca |  |-  ( H e. CH -> ( ( ( projh ` H ) ` A ) e. H /\ ( ( projh ` ( _|_ ` H ) ) ` B ) e. ( _|_ ` H ) ) ) | 
						
							| 10 |  | shocorth |  |-  ( H e. SH -> ( ( ( ( projh ` H ) ` A ) e. H /\ ( ( projh ` ( _|_ ` H ) ) ` B ) e. ( _|_ ` H ) ) -> ( ( ( projh ` H ) ` A ) .ih ( ( projh ` ( _|_ ` H ) ) ` B ) ) = 0 ) ) | 
						
							| 11 | 3 9 10 | sylc |  |-  ( H e. CH -> ( ( ( projh ` H ) ` A ) .ih ( ( projh ` ( _|_ ` H ) ) ` B ) ) = 0 ) |