Step |
Hyp |
Ref |
Expression |
1 |
|
pjorth.1 |
|- A e. ~H |
2 |
|
pjorth.2 |
|- B e. ~H |
3 |
|
chsh |
|- ( H e. CH -> H e. SH ) |
4 |
|
axpjcl |
|- ( ( H e. CH /\ A e. ~H ) -> ( ( projh ` H ) ` A ) e. H ) |
5 |
1 4
|
mpan2 |
|- ( H e. CH -> ( ( projh ` H ) ` A ) e. H ) |
6 |
|
choccl |
|- ( H e. CH -> ( _|_ ` H ) e. CH ) |
7 |
|
axpjcl |
|- ( ( ( _|_ ` H ) e. CH /\ B e. ~H ) -> ( ( projh ` ( _|_ ` H ) ) ` B ) e. ( _|_ ` H ) ) |
8 |
6 2 7
|
sylancl |
|- ( H e. CH -> ( ( projh ` ( _|_ ` H ) ) ` B ) e. ( _|_ ` H ) ) |
9 |
5 8
|
jca |
|- ( H e. CH -> ( ( ( projh ` H ) ` A ) e. H /\ ( ( projh ` ( _|_ ` H ) ) ` B ) e. ( _|_ ` H ) ) ) |
10 |
|
shocorth |
|- ( H e. SH -> ( ( ( ( projh ` H ) ` A ) e. H /\ ( ( projh ` ( _|_ ` H ) ) ` B ) e. ( _|_ ` H ) ) -> ( ( ( projh ` H ) ` A ) .ih ( ( projh ` ( _|_ ` H ) ) ` B ) ) = 0 ) ) |
11 |
3 9 10
|
sylc |
|- ( H e. CH -> ( ( ( projh ` H ) ` A ) .ih ( ( projh ` ( _|_ ` H ) ) ` B ) ) = 0 ) |