Metamath Proof Explorer


Theorem pjpj0i

Description: Decomposition of a vector into projections. (Contributed by NM, 26-Oct-1999) (Revised by Mario Carneiro, 15-May-2014) (New usage is discouraged.)

Ref Expression
Hypotheses pjcli.1
|- H e. CH
pjcli.2
|- A e. ~H
Assertion pjpj0i
|- A = ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) )

Proof

Step Hyp Ref Expression
1 pjcli.1
 |-  H e. CH
2 pjcli.2
 |-  A e. ~H
3 axpjpj
 |-  ( ( H e. CH /\ A e. ~H ) -> A = ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) )
4 1 2 3 mp2an
 |-  A = ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) )