| Step | Hyp | Ref | Expression | 
						
							| 1 |  | axpjcl |  |-  ( ( H e. CH /\ A e. ~H ) -> ( ( projh ` H ) ` A ) e. H ) | 
						
							| 2 |  | choccl |  |-  ( H e. CH -> ( _|_ ` H ) e. CH ) | 
						
							| 3 |  | axpjcl |  |-  ( ( ( _|_ ` H ) e. CH /\ A e. ~H ) -> ( ( projh ` ( _|_ ` H ) ) ` A ) e. ( _|_ ` H ) ) | 
						
							| 4 | 2 3 | sylan |  |-  ( ( H e. CH /\ A e. ~H ) -> ( ( projh ` ( _|_ ` H ) ) ` A ) e. ( _|_ ` H ) ) | 
						
							| 5 |  | axpjpj |  |-  ( ( H e. CH /\ A e. ~H ) -> A = ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) ) | 
						
							| 6 |  | rspceov |  |-  ( ( ( ( projh ` H ) ` A ) e. H /\ ( ( projh ` ( _|_ ` H ) ) ` A ) e. ( _|_ ` H ) /\ A = ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) ) -> E. x e. H E. y e. ( _|_ ` H ) A = ( x +h y ) ) | 
						
							| 7 | 1 4 5 6 | syl3anc |  |-  ( ( H e. CH /\ A e. ~H ) -> E. x e. H E. y e. ( _|_ ` H ) A = ( x +h y ) ) |