Description: Projection Theorem: Any Hilbert space vector A can be decomposed into a member x of a closed subspace H and a member y of the complement of the subspace. Theorem 3.7(i) of Beran p. 102 (existence part). (Contributed by NM, 6-Nov-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjpjhth.1 | |- A e. ~H |
|
| pjpjhth.2 | |- H e. CH |
||
| Assertion | pjpjhthi | |- E. x e. H E. y e. ( _|_ ` H ) A = ( x +h y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjpjhth.1 | |- A e. ~H |
|
| 2 | pjpjhth.2 | |- H e. CH |
|
| 3 | pjpjhth | |- ( ( H e. CH /\ A e. ~H ) -> E. x e. H E. y e. ( _|_ ` H ) A = ( x +h y ) ) |
|
| 4 | 2 1 3 | mp2an | |- E. x e. H E. y e. ( _|_ ` H ) A = ( x +h y ) |