Metamath Proof Explorer


Theorem pjpjhthi

Description: Projection Theorem: Any Hilbert space vector A can be decomposed into a member x of a closed subspace H and a member y of the complement of the subspace. Theorem 3.7(i) of Beran p. 102 (existence part). (Contributed by NM, 6-Nov-1999) (New usage is discouraged.)

Ref Expression
Hypotheses pjpjhth.1
|- A e. ~H
pjpjhth.2
|- H e. CH
Assertion pjpjhthi
|- E. x e. H E. y e. ( _|_ ` H ) A = ( x +h y )

Proof

Step Hyp Ref Expression
1 pjpjhth.1
 |-  A e. ~H
2 pjpjhth.2
 |-  H e. CH
3 pjpjhth
 |-  ( ( H e. CH /\ A e. ~H ) -> E. x e. H E. y e. ( _|_ ` H ) A = ( x +h y ) )
4 2 1 3 mp2an
 |-  E. x e. H E. y e. ( _|_ ` H ) A = ( x +h y )