| Step | Hyp | Ref | Expression | 
						
							| 1 |  | choccl |  |-  ( H e. CH -> ( _|_ ` H ) e. CH ) | 
						
							| 2 |  | pjhcl |  |-  ( ( ( _|_ ` H ) e. CH /\ A e. ~H ) -> ( ( projh ` ( _|_ ` H ) ) ` A ) e. ~H ) | 
						
							| 3 | 1 2 | sylan |  |-  ( ( H e. CH /\ A e. ~H ) -> ( ( projh ` ( _|_ ` H ) ) ` A ) e. ~H ) | 
						
							| 4 |  | pjhcl |  |-  ( ( H e. CH /\ A e. ~H ) -> ( ( projh ` H ) ` A ) e. ~H ) | 
						
							| 5 |  | ax-hvcom |  |-  ( ( ( ( projh ` ( _|_ ` H ) ) ` A ) e. ~H /\ ( ( projh ` H ) ` A ) e. ~H ) -> ( ( ( projh ` ( _|_ ` H ) ) ` A ) +h ( ( projh ` H ) ` A ) ) = ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) ) | 
						
							| 6 | 3 4 5 | syl2anc |  |-  ( ( H e. CH /\ A e. ~H ) -> ( ( ( projh ` ( _|_ ` H ) ) ` A ) +h ( ( projh ` H ) ` A ) ) = ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) ) | 
						
							| 7 |  | axpjpj |  |-  ( ( H e. CH /\ A e. ~H ) -> A = ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) ) | 
						
							| 8 | 6 7 | eqtr4d |  |-  ( ( H e. CH /\ A e. ~H ) -> ( ( ( projh ` ( _|_ ` H ) ) ` A ) +h ( ( projh ` H ) ` A ) ) = A ) | 
						
							| 9 |  | simpr |  |-  ( ( H e. CH /\ A e. ~H ) -> A e. ~H ) | 
						
							| 10 |  | hvsubadd |  |-  ( ( A e. ~H /\ ( ( projh ` ( _|_ ` H ) ) ` A ) e. ~H /\ ( ( projh ` H ) ` A ) e. ~H ) -> ( ( A -h ( ( projh ` ( _|_ ` H ) ) ` A ) ) = ( ( projh ` H ) ` A ) <-> ( ( ( projh ` ( _|_ ` H ) ) ` A ) +h ( ( projh ` H ) ` A ) ) = A ) ) | 
						
							| 11 | 9 3 4 10 | syl3anc |  |-  ( ( H e. CH /\ A e. ~H ) -> ( ( A -h ( ( projh ` ( _|_ ` H ) ) ` A ) ) = ( ( projh ` H ) ` A ) <-> ( ( ( projh ` ( _|_ ` H ) ) ` A ) +h ( ( projh ` H ) ` A ) ) = A ) ) | 
						
							| 12 | 8 11 | mpbird |  |-  ( ( H e. CH /\ A e. ~H ) -> ( A -h ( ( projh ` ( _|_ ` H ) ) ` A ) ) = ( ( projh ` H ) ` A ) ) | 
						
							| 13 | 12 | eqcomd |  |-  ( ( H e. CH /\ A e. ~H ) -> ( ( projh ` H ) ` A ) = ( A -h ( ( projh ` ( _|_ ` H ) ) ` A ) ) ) |