Description: Projection in terms of orthocomplement projection. (Contributed by NM, 31-Oct-1999) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pjop.1 | |- H e. CH |
|
pjop.2 | |- A e. ~H |
||
Assertion | pjpoi | |- ( ( projh ` H ) ` A ) = ( A -h ( ( projh ` ( _|_ ` H ) ) ` A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pjop.1 | |- H e. CH |
|
2 | pjop.2 | |- A e. ~H |
|
3 | pjpo | |- ( ( H e. CH /\ A e. ~H ) -> ( ( projh ` H ) ` A ) = ( A -h ( ( projh ` ( _|_ ` H ) ) ` A ) ) ) |
|
4 | 1 2 3 | mp2an | |- ( ( projh ` H ) ` A ) = ( A -h ( ( projh ` ( _|_ ` H ) ) ` A ) ) |