| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fveq2 | 
							 |-  ( H = if ( H e. CH , H , ~H ) -> ( projh ` H ) = ( projh ` if ( H e. CH , H , ~H ) ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							fveq1d | 
							 |-  ( H = if ( H e. CH , H , ~H ) -> ( ( projh ` H ) ` A ) = ( ( projh ` if ( H e. CH , H , ~H ) ) ` A ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							fveq2d | 
							 |-  ( H = if ( H e. CH , H , ~H ) -> ( normh ` ( ( projh ` H ) ` A ) ) = ( normh ` ( ( projh ` if ( H e. CH , H , ~H ) ) ` A ) ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							oveq1d | 
							 |-  ( H = if ( H e. CH , H , ~H ) -> ( ( normh ` ( ( projh ` H ) ` A ) ) ^ 2 ) = ( ( normh ` ( ( projh ` if ( H e. CH , H , ~H ) ) ` A ) ) ^ 2 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							2fveq3 | 
							 |-  ( H = if ( H e. CH , H , ~H ) -> ( projh ` ( _|_ ` H ) ) = ( projh ` ( _|_ ` if ( H e. CH , H , ~H ) ) ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							fveq1d | 
							 |-  ( H = if ( H e. CH , H , ~H ) -> ( ( projh ` ( _|_ ` H ) ) ` A ) = ( ( projh ` ( _|_ ` if ( H e. CH , H , ~H ) ) ) ` A ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							fveq2d | 
							 |-  ( H = if ( H e. CH , H , ~H ) -> ( normh ` ( ( projh ` ( _|_ ` H ) ) ` A ) ) = ( normh ` ( ( projh ` ( _|_ ` if ( H e. CH , H , ~H ) ) ) ` A ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							oveq1d | 
							 |-  ( H = if ( H e. CH , H , ~H ) -> ( ( normh ` ( ( projh ` ( _|_ ` H ) ) ` A ) ) ^ 2 ) = ( ( normh ` ( ( projh ` ( _|_ ` if ( H e. CH , H , ~H ) ) ) ` A ) ) ^ 2 ) )  | 
						
						
							| 9 | 
							
								4 8
							 | 
							oveq12d | 
							 |-  ( H = if ( H e. CH , H , ~H ) -> ( ( ( normh ` ( ( projh ` H ) ` A ) ) ^ 2 ) + ( ( normh ` ( ( projh ` ( _|_ ` H ) ) ` A ) ) ^ 2 ) ) = ( ( ( normh ` ( ( projh ` if ( H e. CH , H , ~H ) ) ` A ) ) ^ 2 ) + ( ( normh ` ( ( projh ` ( _|_ ` if ( H e. CH , H , ~H ) ) ) ` A ) ) ^ 2 ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							eqeq2d | 
							 |-  ( H = if ( H e. CH , H , ~H ) -> ( ( ( normh ` A ) ^ 2 ) = ( ( ( normh ` ( ( projh ` H ) ` A ) ) ^ 2 ) + ( ( normh ` ( ( projh ` ( _|_ ` H ) ) ` A ) ) ^ 2 ) ) <-> ( ( normh ` A ) ^ 2 ) = ( ( ( normh ` ( ( projh ` if ( H e. CH , H , ~H ) ) ` A ) ) ^ 2 ) + ( ( normh ` ( ( projh ` ( _|_ ` if ( H e. CH , H , ~H ) ) ) ` A ) ) ^ 2 ) ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							fveq2 | 
							 |-  ( A = if ( A e. ~H , A , 0h ) -> ( normh ` A ) = ( normh ` if ( A e. ~H , A , 0h ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							oveq1d | 
							 |-  ( A = if ( A e. ~H , A , 0h ) -> ( ( normh ` A ) ^ 2 ) = ( ( normh ` if ( A e. ~H , A , 0h ) ) ^ 2 ) )  | 
						
						
							| 13 | 
							
								
							 | 
							2fveq3 | 
							 |-  ( A = if ( A e. ~H , A , 0h ) -> ( normh ` ( ( projh ` if ( H e. CH , H , ~H ) ) ` A ) ) = ( normh ` ( ( projh ` if ( H e. CH , H , ~H ) ) ` if ( A e. ~H , A , 0h ) ) ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							oveq1d | 
							 |-  ( A = if ( A e. ~H , A , 0h ) -> ( ( normh ` ( ( projh ` if ( H e. CH , H , ~H ) ) ` A ) ) ^ 2 ) = ( ( normh ` ( ( projh ` if ( H e. CH , H , ~H ) ) ` if ( A e. ~H , A , 0h ) ) ) ^ 2 ) )  | 
						
						
							| 15 | 
							
								
							 | 
							2fveq3 | 
							 |-  ( A = if ( A e. ~H , A , 0h ) -> ( normh ` ( ( projh ` ( _|_ ` if ( H e. CH , H , ~H ) ) ) ` A ) ) = ( normh ` ( ( projh ` ( _|_ ` if ( H e. CH , H , ~H ) ) ) ` if ( A e. ~H , A , 0h ) ) ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							oveq1d | 
							 |-  ( A = if ( A e. ~H , A , 0h ) -> ( ( normh ` ( ( projh ` ( _|_ ` if ( H e. CH , H , ~H ) ) ) ` A ) ) ^ 2 ) = ( ( normh ` ( ( projh ` ( _|_ ` if ( H e. CH , H , ~H ) ) ) ` if ( A e. ~H , A , 0h ) ) ) ^ 2 ) )  | 
						
						
							| 17 | 
							
								14 16
							 | 
							oveq12d | 
							 |-  ( A = if ( A e. ~H , A , 0h ) -> ( ( ( normh ` ( ( projh ` if ( H e. CH , H , ~H ) ) ` A ) ) ^ 2 ) + ( ( normh ` ( ( projh ` ( _|_ ` if ( H e. CH , H , ~H ) ) ) ` A ) ) ^ 2 ) ) = ( ( ( normh ` ( ( projh ` if ( H e. CH , H , ~H ) ) ` if ( A e. ~H , A , 0h ) ) ) ^ 2 ) + ( ( normh ` ( ( projh ` ( _|_ ` if ( H e. CH , H , ~H ) ) ) ` if ( A e. ~H , A , 0h ) ) ) ^ 2 ) ) )  | 
						
						
							| 18 | 
							
								12 17
							 | 
							eqeq12d | 
							 |-  ( A = if ( A e. ~H , A , 0h ) -> ( ( ( normh ` A ) ^ 2 ) = ( ( ( normh ` ( ( projh ` if ( H e. CH , H , ~H ) ) ` A ) ) ^ 2 ) + ( ( normh ` ( ( projh ` ( _|_ ` if ( H e. CH , H , ~H ) ) ) ` A ) ) ^ 2 ) ) <-> ( ( normh ` if ( A e. ~H , A , 0h ) ) ^ 2 ) = ( ( ( normh ` ( ( projh ` if ( H e. CH , H , ~H ) ) ` if ( A e. ~H , A , 0h ) ) ) ^ 2 ) + ( ( normh ` ( ( projh ` ( _|_ ` if ( H e. CH , H , ~H ) ) ) ` if ( A e. ~H , A , 0h ) ) ) ^ 2 ) ) ) )  | 
						
						
							| 19 | 
							
								
							 | 
							ifchhv | 
							 |-  if ( H e. CH , H , ~H ) e. CH  | 
						
						
							| 20 | 
							
								
							 | 
							ifhvhv0 | 
							 |-  if ( A e. ~H , A , 0h ) e. ~H  | 
						
						
							| 21 | 
							
								19 20
							 | 
							pjpythi | 
							 |-  ( ( normh ` if ( A e. ~H , A , 0h ) ) ^ 2 ) = ( ( ( normh ` ( ( projh ` if ( H e. CH , H , ~H ) ) ` if ( A e. ~H , A , 0h ) ) ) ^ 2 ) + ( ( normh ` ( ( projh ` ( _|_ ` if ( H e. CH , H , ~H ) ) ) ` if ( A e. ~H , A , 0h ) ) ) ^ 2 ) )  | 
						
						
							| 22 | 
							
								10 18 21
							 | 
							dedth2h | 
							 |-  ( ( H e. CH /\ A e. ~H ) -> ( ( normh ` A ) ^ 2 ) = ( ( ( normh ` ( ( projh ` H ) ` A ) ) ^ 2 ) + ( ( normh ` ( ( projh ` ( _|_ ` H ) ) ` A ) ) ^ 2 ) ) )  |