Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
|- ( H = if ( H e. CH , H , ~H ) -> ( projh ` H ) = ( projh ` if ( H e. CH , H , ~H ) ) ) |
2 |
1
|
fveq1d |
|- ( H = if ( H e. CH , H , ~H ) -> ( ( projh ` H ) ` A ) = ( ( projh ` if ( H e. CH , H , ~H ) ) ` A ) ) |
3 |
2
|
fveq2d |
|- ( H = if ( H e. CH , H , ~H ) -> ( normh ` ( ( projh ` H ) ` A ) ) = ( normh ` ( ( projh ` if ( H e. CH , H , ~H ) ) ` A ) ) ) |
4 |
3
|
oveq1d |
|- ( H = if ( H e. CH , H , ~H ) -> ( ( normh ` ( ( projh ` H ) ` A ) ) ^ 2 ) = ( ( normh ` ( ( projh ` if ( H e. CH , H , ~H ) ) ` A ) ) ^ 2 ) ) |
5 |
|
2fveq3 |
|- ( H = if ( H e. CH , H , ~H ) -> ( projh ` ( _|_ ` H ) ) = ( projh ` ( _|_ ` if ( H e. CH , H , ~H ) ) ) ) |
6 |
5
|
fveq1d |
|- ( H = if ( H e. CH , H , ~H ) -> ( ( projh ` ( _|_ ` H ) ) ` A ) = ( ( projh ` ( _|_ ` if ( H e. CH , H , ~H ) ) ) ` A ) ) |
7 |
6
|
fveq2d |
|- ( H = if ( H e. CH , H , ~H ) -> ( normh ` ( ( projh ` ( _|_ ` H ) ) ` A ) ) = ( normh ` ( ( projh ` ( _|_ ` if ( H e. CH , H , ~H ) ) ) ` A ) ) ) |
8 |
7
|
oveq1d |
|- ( H = if ( H e. CH , H , ~H ) -> ( ( normh ` ( ( projh ` ( _|_ ` H ) ) ` A ) ) ^ 2 ) = ( ( normh ` ( ( projh ` ( _|_ ` if ( H e. CH , H , ~H ) ) ) ` A ) ) ^ 2 ) ) |
9 |
4 8
|
oveq12d |
|- ( H = if ( H e. CH , H , ~H ) -> ( ( ( normh ` ( ( projh ` H ) ` A ) ) ^ 2 ) + ( ( normh ` ( ( projh ` ( _|_ ` H ) ) ` A ) ) ^ 2 ) ) = ( ( ( normh ` ( ( projh ` if ( H e. CH , H , ~H ) ) ` A ) ) ^ 2 ) + ( ( normh ` ( ( projh ` ( _|_ ` if ( H e. CH , H , ~H ) ) ) ` A ) ) ^ 2 ) ) ) |
10 |
9
|
eqeq2d |
|- ( H = if ( H e. CH , H , ~H ) -> ( ( ( normh ` A ) ^ 2 ) = ( ( ( normh ` ( ( projh ` H ) ` A ) ) ^ 2 ) + ( ( normh ` ( ( projh ` ( _|_ ` H ) ) ` A ) ) ^ 2 ) ) <-> ( ( normh ` A ) ^ 2 ) = ( ( ( normh ` ( ( projh ` if ( H e. CH , H , ~H ) ) ` A ) ) ^ 2 ) + ( ( normh ` ( ( projh ` ( _|_ ` if ( H e. CH , H , ~H ) ) ) ` A ) ) ^ 2 ) ) ) ) |
11 |
|
fveq2 |
|- ( A = if ( A e. ~H , A , 0h ) -> ( normh ` A ) = ( normh ` if ( A e. ~H , A , 0h ) ) ) |
12 |
11
|
oveq1d |
|- ( A = if ( A e. ~H , A , 0h ) -> ( ( normh ` A ) ^ 2 ) = ( ( normh ` if ( A e. ~H , A , 0h ) ) ^ 2 ) ) |
13 |
|
2fveq3 |
|- ( A = if ( A e. ~H , A , 0h ) -> ( normh ` ( ( projh ` if ( H e. CH , H , ~H ) ) ` A ) ) = ( normh ` ( ( projh ` if ( H e. CH , H , ~H ) ) ` if ( A e. ~H , A , 0h ) ) ) ) |
14 |
13
|
oveq1d |
|- ( A = if ( A e. ~H , A , 0h ) -> ( ( normh ` ( ( projh ` if ( H e. CH , H , ~H ) ) ` A ) ) ^ 2 ) = ( ( normh ` ( ( projh ` if ( H e. CH , H , ~H ) ) ` if ( A e. ~H , A , 0h ) ) ) ^ 2 ) ) |
15 |
|
2fveq3 |
|- ( A = if ( A e. ~H , A , 0h ) -> ( normh ` ( ( projh ` ( _|_ ` if ( H e. CH , H , ~H ) ) ) ` A ) ) = ( normh ` ( ( projh ` ( _|_ ` if ( H e. CH , H , ~H ) ) ) ` if ( A e. ~H , A , 0h ) ) ) ) |
16 |
15
|
oveq1d |
|- ( A = if ( A e. ~H , A , 0h ) -> ( ( normh ` ( ( projh ` ( _|_ ` if ( H e. CH , H , ~H ) ) ) ` A ) ) ^ 2 ) = ( ( normh ` ( ( projh ` ( _|_ ` if ( H e. CH , H , ~H ) ) ) ` if ( A e. ~H , A , 0h ) ) ) ^ 2 ) ) |
17 |
14 16
|
oveq12d |
|- ( A = if ( A e. ~H , A , 0h ) -> ( ( ( normh ` ( ( projh ` if ( H e. CH , H , ~H ) ) ` A ) ) ^ 2 ) + ( ( normh ` ( ( projh ` ( _|_ ` if ( H e. CH , H , ~H ) ) ) ` A ) ) ^ 2 ) ) = ( ( ( normh ` ( ( projh ` if ( H e. CH , H , ~H ) ) ` if ( A e. ~H , A , 0h ) ) ) ^ 2 ) + ( ( normh ` ( ( projh ` ( _|_ ` if ( H e. CH , H , ~H ) ) ) ` if ( A e. ~H , A , 0h ) ) ) ^ 2 ) ) ) |
18 |
12 17
|
eqeq12d |
|- ( A = if ( A e. ~H , A , 0h ) -> ( ( ( normh ` A ) ^ 2 ) = ( ( ( normh ` ( ( projh ` if ( H e. CH , H , ~H ) ) ` A ) ) ^ 2 ) + ( ( normh ` ( ( projh ` ( _|_ ` if ( H e. CH , H , ~H ) ) ) ` A ) ) ^ 2 ) ) <-> ( ( normh ` if ( A e. ~H , A , 0h ) ) ^ 2 ) = ( ( ( normh ` ( ( projh ` if ( H e. CH , H , ~H ) ) ` if ( A e. ~H , A , 0h ) ) ) ^ 2 ) + ( ( normh ` ( ( projh ` ( _|_ ` if ( H e. CH , H , ~H ) ) ) ` if ( A e. ~H , A , 0h ) ) ) ^ 2 ) ) ) ) |
19 |
|
ifchhv |
|- if ( H e. CH , H , ~H ) e. CH |
20 |
|
ifhvhv0 |
|- if ( A e. ~H , A , 0h ) e. ~H |
21 |
19 20
|
pjpythi |
|- ( ( normh ` if ( A e. ~H , A , 0h ) ) ^ 2 ) = ( ( ( normh ` ( ( projh ` if ( H e. CH , H , ~H ) ) ` if ( A e. ~H , A , 0h ) ) ) ^ 2 ) + ( ( normh ` ( ( projh ` ( _|_ ` if ( H e. CH , H , ~H ) ) ) ` if ( A e. ~H , A , 0h ) ) ) ^ 2 ) ) |
22 |
10 18 21
|
dedth2h |
|- ( ( H e. CH /\ A e. ~H ) -> ( ( normh ` A ) ^ 2 ) = ( ( ( normh ` ( ( projh ` H ) ` A ) ) ^ 2 ) + ( ( normh ` ( ( projh ` ( _|_ ` H ) ) ` A ) ) ^ 2 ) ) ) |