Step |
Hyp |
Ref |
Expression |
1 |
|
pjnorm.1 |
|- H e. CH |
2 |
|
pjnorm.2 |
|- A e. ~H |
3 |
1 2
|
pjpji |
|- A = ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) |
4 |
3
|
fveq2i |
|- ( normh ` A ) = ( normh ` ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) ) |
5 |
4
|
oveq1i |
|- ( ( normh ` A ) ^ 2 ) = ( ( normh ` ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) ) ^ 2 ) |
6 |
1
|
chshii |
|- H e. SH |
7 |
|
shococss |
|- ( H e. SH -> H C_ ( _|_ ` ( _|_ ` H ) ) ) |
8 |
1
|
choccli |
|- ( _|_ ` H ) e. CH |
9 |
1 8 2
|
pjopythi |
|- ( H C_ ( _|_ ` ( _|_ ` H ) ) -> ( ( normh ` ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) ) ^ 2 ) = ( ( ( normh ` ( ( projh ` H ) ` A ) ) ^ 2 ) + ( ( normh ` ( ( projh ` ( _|_ ` H ) ) ` A ) ) ^ 2 ) ) ) |
10 |
6 7 9
|
mp2b |
|- ( ( normh ` ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) ) ^ 2 ) = ( ( ( normh ` ( ( projh ` H ) ` A ) ) ^ 2 ) + ( ( normh ` ( ( projh ` ( _|_ ` H ) ) ` A ) ) ^ 2 ) ) |
11 |
5 10
|
eqtri |
|- ( ( normh ` A ) ^ 2 ) = ( ( ( normh ` ( ( projh ` H ) ` A ) ) ^ 2 ) + ( ( normh ` ( ( projh ` ( _|_ ` H ) ) ` A ) ) ^ 2 ) ) |