Metamath Proof Explorer


Theorem pjrni

Description: The range of a projection. Part of Theorem 26.2 of Halmos p. 44. (Contributed by NM, 30-Oct-1999) (Revised by Mario Carneiro, 10-Sep-2015) (New usage is discouraged.)

Ref Expression
Hypothesis pjfn.1
|- H e. CH
Assertion pjrni
|- ran ( projh ` H ) = H

Proof

Step Hyp Ref Expression
1 pjfn.1
 |-  H e. CH
2 1 pjfni
 |-  ( projh ` H ) Fn ~H
3 1 pjcli
 |-  ( x e. ~H -> ( ( projh ` H ) ` x ) e. H )
4 3 rgen
 |-  A. x e. ~H ( ( projh ` H ) ` x ) e. H
5 ffnfv
 |-  ( ( projh ` H ) : ~H --> H <-> ( ( projh ` H ) Fn ~H /\ A. x e. ~H ( ( projh ` H ) ` x ) e. H ) )
6 2 4 5 mpbir2an
 |-  ( projh ` H ) : ~H --> H
7 frn
 |-  ( ( projh ` H ) : ~H --> H -> ran ( projh ` H ) C_ H )
8 6 7 ax-mp
 |-  ran ( projh ` H ) C_ H
9 pjid
 |-  ( ( H e. CH /\ y e. H ) -> ( ( projh ` H ) ` y ) = y )
10 1 9 mpan
 |-  ( y e. H -> ( ( projh ` H ) ` y ) = y )
11 1 cheli
 |-  ( y e. H -> y e. ~H )
12 fnfvelrn
 |-  ( ( ( projh ` H ) Fn ~H /\ y e. ~H ) -> ( ( projh ` H ) ` y ) e. ran ( projh ` H ) )
13 2 11 12 sylancr
 |-  ( y e. H -> ( ( projh ` H ) ` y ) e. ran ( projh ` H ) )
14 10 13 eqeltrrd
 |-  ( y e. H -> y e. ran ( projh ` H ) )
15 14 ssriv
 |-  H C_ ran ( projh ` H )
16 8 15 eqssi
 |-  ran ( projh ` H ) = H