| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pjidm.1 |  |-  H e. CH | 
						
							| 2 |  | pjidm.2 |  |-  A e. ~H | 
						
							| 3 |  | pjsslem.1 |  |-  G e. CH | 
						
							| 4 | 1 | choccli |  |-  ( _|_ ` H ) e. CH | 
						
							| 5 | 4 2 | pjclii |  |-  ( ( projh ` ( _|_ ` H ) ) ` A ) e. ( _|_ ` H ) | 
						
							| 6 | 1 3 | chsscon3i |  |-  ( H C_ G <-> ( _|_ ` G ) C_ ( _|_ ` H ) ) | 
						
							| 7 | 3 | choccli |  |-  ( _|_ ` G ) e. CH | 
						
							| 8 | 7 2 | pjclii |  |-  ( ( projh ` ( _|_ ` G ) ) ` A ) e. ( _|_ ` G ) | 
						
							| 9 |  | ssel |  |-  ( ( _|_ ` G ) C_ ( _|_ ` H ) -> ( ( ( projh ` ( _|_ ` G ) ) ` A ) e. ( _|_ ` G ) -> ( ( projh ` ( _|_ ` G ) ) ` A ) e. ( _|_ ` H ) ) ) | 
						
							| 10 | 8 9 | mpi |  |-  ( ( _|_ ` G ) C_ ( _|_ ` H ) -> ( ( projh ` ( _|_ ` G ) ) ` A ) e. ( _|_ ` H ) ) | 
						
							| 11 | 6 10 | sylbi |  |-  ( H C_ G -> ( ( projh ` ( _|_ ` G ) ) ` A ) e. ( _|_ ` H ) ) | 
						
							| 12 | 4 | chshii |  |-  ( _|_ ` H ) e. SH | 
						
							| 13 |  | shsubcl |  |-  ( ( ( _|_ ` H ) e. SH /\ ( ( projh ` ( _|_ ` H ) ) ` A ) e. ( _|_ ` H ) /\ ( ( projh ` ( _|_ ` G ) ) ` A ) e. ( _|_ ` H ) ) -> ( ( ( projh ` ( _|_ ` H ) ) ` A ) -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) e. ( _|_ ` H ) ) | 
						
							| 14 | 12 13 | mp3an1 |  |-  ( ( ( ( projh ` ( _|_ ` H ) ) ` A ) e. ( _|_ ` H ) /\ ( ( projh ` ( _|_ ` G ) ) ` A ) e. ( _|_ ` H ) ) -> ( ( ( projh ` ( _|_ ` H ) ) ` A ) -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) e. ( _|_ ` H ) ) | 
						
							| 15 | 5 11 14 | sylancr |  |-  ( H C_ G -> ( ( ( projh ` ( _|_ ` H ) ) ` A ) -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) e. ( _|_ ` H ) ) | 
						
							| 16 | 1 2 3 | pjsslem |  |-  ( ( ( projh ` ( _|_ ` H ) ) ` A ) -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) = ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) | 
						
							| 17 | 16 | eleq1i |  |-  ( ( ( ( projh ` ( _|_ ` H ) ) ` A ) -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) e. ( _|_ ` H ) <-> ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) e. ( _|_ ` H ) ) | 
						
							| 18 | 3 2 | pjhclii |  |-  ( ( projh ` G ) ` A ) e. ~H | 
						
							| 19 | 1 2 | pjhclii |  |-  ( ( projh ` H ) ` A ) e. ~H | 
						
							| 20 | 18 19 | hvsubcli |  |-  ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) e. ~H | 
						
							| 21 | 1 20 | pjoc2i |  |-  ( ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) e. ( _|_ ` H ) <-> ( ( projh ` H ) ` ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) ) = 0h ) | 
						
							| 22 | 17 21 | bitri |  |-  ( ( ( ( projh ` ( _|_ ` H ) ) ` A ) -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) e. ( _|_ ` H ) <-> ( ( projh ` H ) ` ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) ) = 0h ) | 
						
							| 23 | 1 18 19 | pjsubii |  |-  ( ( projh ` H ) ` ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) ) = ( ( ( projh ` H ) ` ( ( projh ` G ) ` A ) ) -h ( ( projh ` H ) ` ( ( projh ` H ) ` A ) ) ) | 
						
							| 24 | 23 | eqeq1i |  |-  ( ( ( projh ` H ) ` ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) ) = 0h <-> ( ( ( projh ` H ) ` ( ( projh ` G ) ` A ) ) -h ( ( projh ` H ) ` ( ( projh ` H ) ` A ) ) ) = 0h ) | 
						
							| 25 | 1 18 | pjhclii |  |-  ( ( projh ` H ) ` ( ( projh ` G ) ` A ) ) e. ~H | 
						
							| 26 | 1 19 | pjhclii |  |-  ( ( projh ` H ) ` ( ( projh ` H ) ` A ) ) e. ~H | 
						
							| 27 | 25 26 | hvsubeq0i |  |-  ( ( ( ( projh ` H ) ` ( ( projh ` G ) ` A ) ) -h ( ( projh ` H ) ` ( ( projh ` H ) ` A ) ) ) = 0h <-> ( ( projh ` H ) ` ( ( projh ` G ) ` A ) ) = ( ( projh ` H ) ` ( ( projh ` H ) ` A ) ) ) | 
						
							| 28 | 24 27 | bitri |  |-  ( ( ( projh ` H ) ` ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) ) = 0h <-> ( ( projh ` H ) ` ( ( projh ` G ) ` A ) ) = ( ( projh ` H ) ` ( ( projh ` H ) ` A ) ) ) | 
						
							| 29 | 1 2 | pjidmi |  |-  ( ( projh ` H ) ` ( ( projh ` H ) ` A ) ) = ( ( projh ` H ) ` A ) | 
						
							| 30 | 29 | eqeq2i |  |-  ( ( ( projh ` H ) ` ( ( projh ` G ) ` A ) ) = ( ( projh ` H ) ` ( ( projh ` H ) ` A ) ) <-> ( ( projh ` H ) ` ( ( projh ` G ) ` A ) ) = ( ( projh ` H ) ` A ) ) | 
						
							| 31 | 22 28 30 | 3bitrri |  |-  ( ( ( projh ` H ) ` ( ( projh ` G ) ` A ) ) = ( ( projh ` H ) ` A ) <-> ( ( ( projh ` ( _|_ ` H ) ) ` A ) -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) e. ( _|_ ` H ) ) | 
						
							| 32 | 15 31 | sylibr |  |-  ( H C_ G -> ( ( projh ` H ) ` ( ( projh ` G ) ` A ) ) = ( ( projh ` H ) ` A ) ) |