Step |
Hyp |
Ref |
Expression |
1 |
|
pjidm.1 |
|- H e. CH |
2 |
|
pjidm.2 |
|- A e. ~H |
3 |
|
pjsslem.1 |
|- G e. CH |
4 |
1
|
choccli |
|- ( _|_ ` H ) e. CH |
5 |
4 2
|
pjclii |
|- ( ( projh ` ( _|_ ` H ) ) ` A ) e. ( _|_ ` H ) |
6 |
1 3
|
chsscon3i |
|- ( H C_ G <-> ( _|_ ` G ) C_ ( _|_ ` H ) ) |
7 |
3
|
choccli |
|- ( _|_ ` G ) e. CH |
8 |
7 2
|
pjclii |
|- ( ( projh ` ( _|_ ` G ) ) ` A ) e. ( _|_ ` G ) |
9 |
|
ssel |
|- ( ( _|_ ` G ) C_ ( _|_ ` H ) -> ( ( ( projh ` ( _|_ ` G ) ) ` A ) e. ( _|_ ` G ) -> ( ( projh ` ( _|_ ` G ) ) ` A ) e. ( _|_ ` H ) ) ) |
10 |
8 9
|
mpi |
|- ( ( _|_ ` G ) C_ ( _|_ ` H ) -> ( ( projh ` ( _|_ ` G ) ) ` A ) e. ( _|_ ` H ) ) |
11 |
6 10
|
sylbi |
|- ( H C_ G -> ( ( projh ` ( _|_ ` G ) ) ` A ) e. ( _|_ ` H ) ) |
12 |
4
|
chshii |
|- ( _|_ ` H ) e. SH |
13 |
|
shsubcl |
|- ( ( ( _|_ ` H ) e. SH /\ ( ( projh ` ( _|_ ` H ) ) ` A ) e. ( _|_ ` H ) /\ ( ( projh ` ( _|_ ` G ) ) ` A ) e. ( _|_ ` H ) ) -> ( ( ( projh ` ( _|_ ` H ) ) ` A ) -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) e. ( _|_ ` H ) ) |
14 |
12 13
|
mp3an1 |
|- ( ( ( ( projh ` ( _|_ ` H ) ) ` A ) e. ( _|_ ` H ) /\ ( ( projh ` ( _|_ ` G ) ) ` A ) e. ( _|_ ` H ) ) -> ( ( ( projh ` ( _|_ ` H ) ) ` A ) -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) e. ( _|_ ` H ) ) |
15 |
5 11 14
|
sylancr |
|- ( H C_ G -> ( ( ( projh ` ( _|_ ` H ) ) ` A ) -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) e. ( _|_ ` H ) ) |
16 |
1 2 3
|
pjsslem |
|- ( ( ( projh ` ( _|_ ` H ) ) ` A ) -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) = ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) |
17 |
16
|
eleq1i |
|- ( ( ( ( projh ` ( _|_ ` H ) ) ` A ) -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) e. ( _|_ ` H ) <-> ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) e. ( _|_ ` H ) ) |
18 |
3 2
|
pjhclii |
|- ( ( projh ` G ) ` A ) e. ~H |
19 |
1 2
|
pjhclii |
|- ( ( projh ` H ) ` A ) e. ~H |
20 |
18 19
|
hvsubcli |
|- ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) e. ~H |
21 |
1 20
|
pjoc2i |
|- ( ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) e. ( _|_ ` H ) <-> ( ( projh ` H ) ` ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) ) = 0h ) |
22 |
17 21
|
bitri |
|- ( ( ( ( projh ` ( _|_ ` H ) ) ` A ) -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) e. ( _|_ ` H ) <-> ( ( projh ` H ) ` ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) ) = 0h ) |
23 |
1 18 19
|
pjsubii |
|- ( ( projh ` H ) ` ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) ) = ( ( ( projh ` H ) ` ( ( projh ` G ) ` A ) ) -h ( ( projh ` H ) ` ( ( projh ` H ) ` A ) ) ) |
24 |
23
|
eqeq1i |
|- ( ( ( projh ` H ) ` ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) ) = 0h <-> ( ( ( projh ` H ) ` ( ( projh ` G ) ` A ) ) -h ( ( projh ` H ) ` ( ( projh ` H ) ` A ) ) ) = 0h ) |
25 |
1 18
|
pjhclii |
|- ( ( projh ` H ) ` ( ( projh ` G ) ` A ) ) e. ~H |
26 |
1 19
|
pjhclii |
|- ( ( projh ` H ) ` ( ( projh ` H ) ` A ) ) e. ~H |
27 |
25 26
|
hvsubeq0i |
|- ( ( ( ( projh ` H ) ` ( ( projh ` G ) ` A ) ) -h ( ( projh ` H ) ` ( ( projh ` H ) ` A ) ) ) = 0h <-> ( ( projh ` H ) ` ( ( projh ` G ) ` A ) ) = ( ( projh ` H ) ` ( ( projh ` H ) ` A ) ) ) |
28 |
24 27
|
bitri |
|- ( ( ( projh ` H ) ` ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) ) = 0h <-> ( ( projh ` H ) ` ( ( projh ` G ) ` A ) ) = ( ( projh ` H ) ` ( ( projh ` H ) ` A ) ) ) |
29 |
1 2
|
pjidmi |
|- ( ( projh ` H ) ` ( ( projh ` H ) ` A ) ) = ( ( projh ` H ) ` A ) |
30 |
29
|
eqeq2i |
|- ( ( ( projh ` H ) ` ( ( projh ` G ) ` A ) ) = ( ( projh ` H ) ` ( ( projh ` H ) ` A ) ) <-> ( ( projh ` H ) ` ( ( projh ` G ) ` A ) ) = ( ( projh ` H ) ` A ) ) |
31 |
22 28 30
|
3bitrri |
|- ( ( ( projh ` H ) ` ( ( projh ` G ) ` A ) ) = ( ( projh ` H ) ` A ) <-> ( ( ( projh ` ( _|_ ` H ) ) ` A ) -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) e. ( _|_ ` H ) ) |
32 |
15 31
|
sylibr |
|- ( H C_ G -> ( ( projh ` H ) ` ( ( projh ` G ) ` A ) ) = ( ( projh ` H ) ` A ) ) |