| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjidm.1 |
|- H e. CH |
| 2 |
|
pjidm.2 |
|- A e. ~H |
| 3 |
|
pjsslem.1 |
|- G e. CH |
| 4 |
1
|
choccli |
|- ( _|_ ` H ) e. CH |
| 5 |
3 4
|
chincli |
|- ( G i^i ( _|_ ` H ) ) e. CH |
| 6 |
5 2
|
pjhclii |
|- ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` A ) e. ~H |
| 7 |
6
|
normcli |
|- ( normh ` ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` A ) ) e. RR |
| 8 |
7
|
sqge0i |
|- 0 <_ ( ( normh ` ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` A ) ) ^ 2 ) |
| 9 |
|
oveq1 |
|- ( ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) = ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` A ) -> ( ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) .ih A ) = ( ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` A ) .ih A ) ) |
| 10 |
5 2
|
pjinormii |
|- ( ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` A ) .ih A ) = ( ( normh ` ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` A ) ) ^ 2 ) |
| 11 |
9 10
|
eqtrdi |
|- ( ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) = ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` A ) -> ( ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) .ih A ) = ( ( normh ` ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` A ) ) ^ 2 ) ) |
| 12 |
8 11
|
breqtrrid |
|- ( ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) = ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` A ) -> 0 <_ ( ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) .ih A ) ) |