| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjidm.1 |
|- H e. CH |
| 2 |
|
pjidm.2 |
|- A e. ~H |
| 3 |
|
pjsslem.1 |
|- G e. CH |
| 4 |
|
pjo |
|- ( ( H e. CH /\ A e. ~H ) -> ( ( projh ` ( _|_ ` H ) ) ` A ) = ( ( ( projh ` ~H ) ` A ) -h ( ( projh ` H ) ` A ) ) ) |
| 5 |
1 2 4
|
mp2an |
|- ( ( projh ` ( _|_ ` H ) ) ` A ) = ( ( ( projh ` ~H ) ` A ) -h ( ( projh ` H ) ` A ) ) |
| 6 |
|
pjo |
|- ( ( G e. CH /\ A e. ~H ) -> ( ( projh ` ( _|_ ` G ) ) ` A ) = ( ( ( projh ` ~H ) ` A ) -h ( ( projh ` G ) ` A ) ) ) |
| 7 |
3 2 6
|
mp2an |
|- ( ( projh ` ( _|_ ` G ) ) ` A ) = ( ( ( projh ` ~H ) ` A ) -h ( ( projh ` G ) ` A ) ) |
| 8 |
5 7
|
oveq12i |
|- ( ( ( projh ` ( _|_ ` H ) ) ` A ) -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) = ( ( ( ( projh ` ~H ) ` A ) -h ( ( projh ` H ) ` A ) ) -h ( ( ( projh ` ~H ) ` A ) -h ( ( projh ` G ) ` A ) ) ) |
| 9 |
|
helch |
|- ~H e. CH |
| 10 |
9 2
|
pjclii |
|- ( ( projh ` ~H ) ` A ) e. ~H |
| 11 |
1 2
|
pjhclii |
|- ( ( projh ` H ) ` A ) e. ~H |
| 12 |
3 2
|
pjhclii |
|- ( ( projh ` G ) ` A ) e. ~H |
| 13 |
10 11 10 12
|
hvsubsub4i |
|- ( ( ( ( projh ` ~H ) ` A ) -h ( ( projh ` H ) ` A ) ) -h ( ( ( projh ` ~H ) ` A ) -h ( ( projh ` G ) ` A ) ) ) = ( ( ( ( projh ` ~H ) ` A ) -h ( ( projh ` ~H ) ` A ) ) -h ( ( ( projh ` H ) ` A ) -h ( ( projh ` G ) ` A ) ) ) |
| 14 |
|
hvsubid |
|- ( ( ( projh ` ~H ) ` A ) e. ~H -> ( ( ( projh ` ~H ) ` A ) -h ( ( projh ` ~H ) ` A ) ) = 0h ) |
| 15 |
10 14
|
ax-mp |
|- ( ( ( projh ` ~H ) ` A ) -h ( ( projh ` ~H ) ` A ) ) = 0h |
| 16 |
15
|
oveq1i |
|- ( ( ( ( projh ` ~H ) ` A ) -h ( ( projh ` ~H ) ` A ) ) -h ( ( ( projh ` H ) ` A ) -h ( ( projh ` G ) ` A ) ) ) = ( 0h -h ( ( ( projh ` H ) ` A ) -h ( ( projh ` G ) ` A ) ) ) |
| 17 |
8 13 16
|
3eqtri |
|- ( ( ( projh ` ( _|_ ` H ) ) ` A ) -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) = ( 0h -h ( ( ( projh ` H ) ` A ) -h ( ( projh ` G ) ` A ) ) ) |
| 18 |
11 12
|
hvsubcli |
|- ( ( ( projh ` H ) ` A ) -h ( ( projh ` G ) ` A ) ) e. ~H |
| 19 |
18
|
hv2negi |
|- ( 0h -h ( ( ( projh ` H ) ` A ) -h ( ( projh ` G ) ` A ) ) ) = ( -u 1 .h ( ( ( projh ` H ) ` A ) -h ( ( projh ` G ) ` A ) ) ) |
| 20 |
11 12
|
hvnegdii |
|- ( -u 1 .h ( ( ( projh ` H ) ` A ) -h ( ( projh ` G ) ` A ) ) ) = ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) |
| 21 |
17 19 20
|
3eqtri |
|- ( ( ( projh ` ( _|_ ` H ) ) ` A ) -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) = ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) |