Step |
Hyp |
Ref |
Expression |
1 |
|
pjidm.1 |
|- H e. CH |
2 |
|
pjidm.2 |
|- A e. ~H |
3 |
|
pjsslem.1 |
|- G e. CH |
4 |
|
pjo |
|- ( ( H e. CH /\ A e. ~H ) -> ( ( projh ` ( _|_ ` H ) ) ` A ) = ( ( ( projh ` ~H ) ` A ) -h ( ( projh ` H ) ` A ) ) ) |
5 |
1 2 4
|
mp2an |
|- ( ( projh ` ( _|_ ` H ) ) ` A ) = ( ( ( projh ` ~H ) ` A ) -h ( ( projh ` H ) ` A ) ) |
6 |
|
pjo |
|- ( ( G e. CH /\ A e. ~H ) -> ( ( projh ` ( _|_ ` G ) ) ` A ) = ( ( ( projh ` ~H ) ` A ) -h ( ( projh ` G ) ` A ) ) ) |
7 |
3 2 6
|
mp2an |
|- ( ( projh ` ( _|_ ` G ) ) ` A ) = ( ( ( projh ` ~H ) ` A ) -h ( ( projh ` G ) ` A ) ) |
8 |
5 7
|
oveq12i |
|- ( ( ( projh ` ( _|_ ` H ) ) ` A ) -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) = ( ( ( ( projh ` ~H ) ` A ) -h ( ( projh ` H ) ` A ) ) -h ( ( ( projh ` ~H ) ` A ) -h ( ( projh ` G ) ` A ) ) ) |
9 |
|
helch |
|- ~H e. CH |
10 |
9 2
|
pjclii |
|- ( ( projh ` ~H ) ` A ) e. ~H |
11 |
1 2
|
pjhclii |
|- ( ( projh ` H ) ` A ) e. ~H |
12 |
3 2
|
pjhclii |
|- ( ( projh ` G ) ` A ) e. ~H |
13 |
10 11 10 12
|
hvsubsub4i |
|- ( ( ( ( projh ` ~H ) ` A ) -h ( ( projh ` H ) ` A ) ) -h ( ( ( projh ` ~H ) ` A ) -h ( ( projh ` G ) ` A ) ) ) = ( ( ( ( projh ` ~H ) ` A ) -h ( ( projh ` ~H ) ` A ) ) -h ( ( ( projh ` H ) ` A ) -h ( ( projh ` G ) ` A ) ) ) |
14 |
|
hvsubid |
|- ( ( ( projh ` ~H ) ` A ) e. ~H -> ( ( ( projh ` ~H ) ` A ) -h ( ( projh ` ~H ) ` A ) ) = 0h ) |
15 |
10 14
|
ax-mp |
|- ( ( ( projh ` ~H ) ` A ) -h ( ( projh ` ~H ) ` A ) ) = 0h |
16 |
15
|
oveq1i |
|- ( ( ( ( projh ` ~H ) ` A ) -h ( ( projh ` ~H ) ` A ) ) -h ( ( ( projh ` H ) ` A ) -h ( ( projh ` G ) ` A ) ) ) = ( 0h -h ( ( ( projh ` H ) ` A ) -h ( ( projh ` G ) ` A ) ) ) |
17 |
8 13 16
|
3eqtri |
|- ( ( ( projh ` ( _|_ ` H ) ) ` A ) -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) = ( 0h -h ( ( ( projh ` H ) ` A ) -h ( ( projh ` G ) ` A ) ) ) |
18 |
11 12
|
hvsubcli |
|- ( ( ( projh ` H ) ` A ) -h ( ( projh ` G ) ` A ) ) e. ~H |
19 |
18
|
hv2negi |
|- ( 0h -h ( ( ( projh ` H ) ` A ) -h ( ( projh ` G ) ` A ) ) ) = ( -u 1 .h ( ( ( projh ` H ) ` A ) -h ( ( projh ` G ) ` A ) ) ) |
20 |
11 12
|
hvnegdii |
|- ( -u 1 .h ( ( ( projh ` H ) ` A ) -h ( ( projh ` G ) ` A ) ) ) = ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) |
21 |
17 19 20
|
3eqtri |
|- ( ( ( projh ` ( _|_ ` H ) ) ` A ) -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) = ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) |