Metamath Proof Explorer


Theorem pjvec

Description: The set of vectors belonging to the subspace of a projection. Part of Theorem 26.2 of Halmos p. 44. (Contributed by NM, 11-Apr-2006) (New usage is discouraged.)

Ref Expression
Assertion pjvec
|- ( H e. CH -> H = { x e. ~H | ( ( projh ` H ) ` x ) = x } )

Proof

Step Hyp Ref Expression
1 chss
 |-  ( H e. CH -> H C_ ~H )
2 sseqin2
 |-  ( H C_ ~H <-> ( ~H i^i H ) = H )
3 1 2 sylib
 |-  ( H e. CH -> ( ~H i^i H ) = H )
4 pjch
 |-  ( ( H e. CH /\ x e. ~H ) -> ( x e. H <-> ( ( projh ` H ) ` x ) = x ) )
5 4 rabbi2dva
 |-  ( H e. CH -> ( ~H i^i H ) = { x e. ~H | ( ( projh ` H ) ` x ) = x } )
6 3 5 eqtr3d
 |-  ( H e. CH -> H = { x e. ~H | ( ( projh ` H ) ` x ) = x } )