Metamath Proof Explorer


Theorem pjvi

Description: The value of a projection in terms of components. (Contributed by NM, 28-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypothesis pjfn.1
|- H e. CH
Assertion pjvi
|- ( ( A e. H /\ B e. ( _|_ ` H ) ) -> ( ( projh ` H ) ` ( A +h B ) ) = A )

Proof

Step Hyp Ref Expression
1 pjfn.1
 |-  H e. CH
2 1 pjcompi
 |-  ( ( A e. H /\ B e. ( _|_ ` H ) ) -> ( ( projh ` H ) ` ( A +h B ) ) = A )