Metamath Proof Explorer


Theorem plcofph

Description: Given, a,b and a "definition" for c, c is demonstrated. (Contributed by Jarvin Udandy, 8-Sep-2020)

Ref Expression
Hypotheses plcofph.1
|- ( ch <-> ( ( ( ( ph /\ ps ) <-> ph ) -> ( ph /\ -. ( ph /\ -. ph ) ) ) /\ ( ph /\ -. ( ph /\ -. ph ) ) ) )
plcofph.2
|- ph
plcofph.3
|- ps
Assertion plcofph
|- ch

Proof

Step Hyp Ref Expression
1 plcofph.1
 |-  ( ch <-> ( ( ( ( ph /\ ps ) <-> ph ) -> ( ph /\ -. ( ph /\ -. ph ) ) ) /\ ( ph /\ -. ( ph /\ -. ph ) ) ) )
2 plcofph.2
 |-  ph
3 plcofph.3
 |-  ps
4 pm3.24
 |-  -. ( ph /\ -. ph )
5 2 4 pm3.2i
 |-  ( ph /\ -. ( ph /\ -. ph ) )
6 5 a1i
 |-  ( ( ( ph /\ ps ) <-> ph ) -> ( ph /\ -. ( ph /\ -. ph ) ) )
7 6 5 pm3.2i
 |-  ( ( ( ( ph /\ ps ) <-> ph ) -> ( ph /\ -. ( ph /\ -. ph ) ) ) /\ ( ph /\ -. ( ph /\ -. ph ) ) )
8 1 bicomi
 |-  ( ( ( ( ( ph /\ ps ) <-> ph ) -> ( ph /\ -. ( ph /\ -. ph ) ) ) /\ ( ph /\ -. ( ph /\ -. ph ) ) ) <-> ch )
9 8 biimpi
 |-  ( ( ( ( ( ph /\ ps ) <-> ph ) -> ( ph /\ -. ( ph /\ -. ph ) ) ) /\ ( ph /\ -. ( ph /\ -. ph ) ) ) -> ch )
10 7 9 ax-mp
 |-  ch