Step |
Hyp |
Ref |
Expression |
1 |
|
plcofph.1 |
|- ( ch <-> ( ( ( ( ph /\ ps ) <-> ph ) -> ( ph /\ -. ( ph /\ -. ph ) ) ) /\ ( ph /\ -. ( ph /\ -. ph ) ) ) ) |
2 |
|
plcofph.2 |
|- ph |
3 |
|
plcofph.3 |
|- ps |
4 |
|
pm3.24 |
|- -. ( ph /\ -. ph ) |
5 |
2 4
|
pm3.2i |
|- ( ph /\ -. ( ph /\ -. ph ) ) |
6 |
5
|
a1i |
|- ( ( ( ph /\ ps ) <-> ph ) -> ( ph /\ -. ( ph /\ -. ph ) ) ) |
7 |
6 5
|
pm3.2i |
|- ( ( ( ( ph /\ ps ) <-> ph ) -> ( ph /\ -. ( ph /\ -. ph ) ) ) /\ ( ph /\ -. ( ph /\ -. ph ) ) ) |
8 |
1
|
bicomi |
|- ( ( ( ( ( ph /\ ps ) <-> ph ) -> ( ph /\ -. ( ph /\ -. ph ) ) ) /\ ( ph /\ -. ( ph /\ -. ph ) ) ) <-> ch ) |
9 |
8
|
biimpi |
|- ( ( ( ( ( ph /\ ps ) <-> ph ) -> ( ph /\ -. ( ph /\ -. ph ) ) ) /\ ( ph /\ -. ( ph /\ -. ph ) ) ) -> ch ) |
10 |
7 9
|
ax-mp |
|- ch |