Metamath Proof Explorer
Description: Given, a,b c, d, "definition" for e, e is demonstrated. (Contributed by Jarvin Udandy, 8-Sep-2020)
|
|
Ref |
Expression |
|
Hypotheses |
pldofph.1 |
|- ( ta <-> ( ( ch -> th ) /\ ( ph <-> ch ) /\ ( ( ph -> ps ) -> ( ps <-> th ) ) ) ) |
|
|
pldofph.2 |
|- ph |
|
|
pldofph.3 |
|- ps |
|
|
pldofph.4 |
|- ch |
|
|
pldofph.5 |
|- th |
|
Assertion |
pldofph |
|- ta |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pldofph.1 |
|- ( ta <-> ( ( ch -> th ) /\ ( ph <-> ch ) /\ ( ( ph -> ps ) -> ( ps <-> th ) ) ) ) |
| 2 |
|
pldofph.2 |
|- ph |
| 3 |
|
pldofph.3 |
|- ps |
| 4 |
|
pldofph.4 |
|- ch |
| 5 |
|
pldofph.5 |
|- th |
| 6 |
5
|
a1i |
|- ( ch -> th ) |
| 7 |
2 4
|
2th |
|- ( ph <-> ch ) |
| 8 |
3 5
|
2th |
|- ( ps <-> th ) |
| 9 |
8
|
a1i |
|- ( ( ph -> ps ) -> ( ps <-> th ) ) |
| 10 |
6 7 9
|
3pm3.2i |
|- ( ( ch -> th ) /\ ( ph <-> ch ) /\ ( ( ph -> ps ) -> ( ps <-> th ) ) ) |
| 11 |
1
|
bicomi |
|- ( ( ( ch -> th ) /\ ( ph <-> ch ) /\ ( ( ph -> ps ) -> ( ps <-> th ) ) ) <-> ta ) |
| 12 |
11
|
biimpi |
|- ( ( ( ch -> th ) /\ ( ph <-> ch ) /\ ( ( ph -> ps ) -> ( ps <-> th ) ) ) -> ta ) |
| 13 |
10 12
|
ax-mp |
|- ta |