Metamath Proof Explorer


Theorem pldofph

Description: Given, a,b c, d, "definition" for e, e is demonstrated. (Contributed by Jarvin Udandy, 8-Sep-2020)

Ref Expression
Hypotheses pldofph.1
|- ( ta <-> ( ( ch -> th ) /\ ( ph <-> ch ) /\ ( ( ph -> ps ) -> ( ps <-> th ) ) ) )
pldofph.2
|- ph
pldofph.3
|- ps
pldofph.4
|- ch
pldofph.5
|- th
Assertion pldofph
|- ta

Proof

Step Hyp Ref Expression
1 pldofph.1
 |-  ( ta <-> ( ( ch -> th ) /\ ( ph <-> ch ) /\ ( ( ph -> ps ) -> ( ps <-> th ) ) ) )
2 pldofph.2
 |-  ph
3 pldofph.3
 |-  ps
4 pldofph.4
 |-  ch
5 pldofph.5
 |-  th
6 5 a1i
 |-  ( ch -> th )
7 2 4 2th
 |-  ( ph <-> ch )
8 3 5 2th
 |-  ( ps <-> th )
9 8 a1i
 |-  ( ( ph -> ps ) -> ( ps <-> th ) )
10 6 7 9 3pm3.2i
 |-  ( ( ch -> th ) /\ ( ph <-> ch ) /\ ( ( ph -> ps ) -> ( ps <-> th ) ) )
11 1 bicomi
 |-  ( ( ( ch -> th ) /\ ( ph <-> ch ) /\ ( ( ph -> ps ) -> ( ps <-> th ) ) ) <-> ta )
12 11 biimpi
 |-  ( ( ( ch -> th ) /\ ( ph <-> ch ) /\ ( ( ph -> ps ) -> ( ps <-> th ) ) ) -> ta )
13 10 12 ax-mp
 |-  ta