| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							pltletr.b | 
							 |-  B = ( Base ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							pltletr.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							pltletr.s | 
							 |-  .< = ( lt ` K )  | 
						
						
							| 4 | 
							
								1 2 3
							 | 
							pleval2 | 
							 |-  ( ( K e. Poset /\ X e. B /\ Y e. B ) -> ( X .<_ Y <-> ( X .< Y \/ X = Y ) ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							3adant3r3 | 
							 |-  ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X .<_ Y <-> ( X .< Y \/ X = Y ) ) )  | 
						
						
							| 6 | 
							
								1 3
							 | 
							plttr | 
							 |-  ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .< Y /\ Y .< Z ) -> X .< Z ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							expd | 
							 |-  ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X .< Y -> ( Y .< Z -> X .< Z ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							breq1 | 
							 |-  ( X = Y -> ( X .< Z <-> Y .< Z ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							biimprd | 
							 |-  ( X = Y -> ( Y .< Z -> X .< Z ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							a1i | 
							 |-  ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X = Y -> ( Y .< Z -> X .< Z ) ) )  | 
						
						
							| 11 | 
							
								7 10
							 | 
							jaod | 
							 |-  ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .< Y \/ X = Y ) -> ( Y .< Z -> X .< Z ) ) )  | 
						
						
							| 12 | 
							
								5 11
							 | 
							sylbid | 
							 |-  ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X .<_ Y -> ( Y .< Z -> X .< Z ) ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							impd | 
							 |-  ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .<_ Y /\ Y .< Z ) -> X .< Z ) )  |