Metamath Proof Explorer


Theorem plendxnbasendx

Description: The slot for the order is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024)

Ref Expression
Assertion plendxnbasendx
|- ( le ` ndx ) =/= ( Base ` ndx )

Proof

Step Hyp Ref Expression
1 1re
 |-  1 e. RR
2 1lt10
 |-  1 < ; 1 0
3 1 2 gtneii
 |-  ; 1 0 =/= 1
4 plendx
 |-  ( le ` ndx ) = ; 1 0
5 basendx
 |-  ( Base ` ndx ) = 1
6 4 5 neeq12i
 |-  ( ( le ` ndx ) =/= ( Base ` ndx ) <-> ; 1 0 =/= 1 )
7 3 6 mpbir
 |-  ( le ` ndx ) =/= ( Base ` ndx )