| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							pleval2.b | 
							 |-  B = ( Base ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							pleval2.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							pleval2.s | 
							 |-  .< = ( lt ` K )  | 
						
						
							| 4 | 
							
								1 2 3
							 | 
							pleval2i | 
							 |-  ( ( X e. B /\ Y e. B ) -> ( X .<_ Y -> ( X .< Y \/ X = Y ) ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							3adant1 | 
							 |-  ( ( K e. Poset /\ X e. B /\ Y e. B ) -> ( X .<_ Y -> ( X .< Y \/ X = Y ) ) )  | 
						
						
							| 6 | 
							
								2 3
							 | 
							pltle | 
							 |-  ( ( K e. Poset /\ X e. B /\ Y e. B ) -> ( X .< Y -> X .<_ Y ) )  | 
						
						
							| 7 | 
							
								1 2
							 | 
							posref | 
							 |-  ( ( K e. Poset /\ X e. B ) -> X .<_ X )  | 
						
						
							| 8 | 
							
								7
							 | 
							3adant3 | 
							 |-  ( ( K e. Poset /\ X e. B /\ Y e. B ) -> X .<_ X )  | 
						
						
							| 9 | 
							
								
							 | 
							breq2 | 
							 |-  ( X = Y -> ( X .<_ X <-> X .<_ Y ) )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							syl5ibcom | 
							 |-  ( ( K e. Poset /\ X e. B /\ Y e. B ) -> ( X = Y -> X .<_ Y ) )  | 
						
						
							| 11 | 
							
								6 10
							 | 
							jaod | 
							 |-  ( ( K e. Poset /\ X e. B /\ Y e. B ) -> ( ( X .< Y \/ X = Y ) -> X .<_ Y ) )  | 
						
						
							| 12 | 
							
								5 11
							 | 
							impbid | 
							 |-  ( ( K e. Poset /\ X e. B /\ Y e. B ) -> ( X .<_ Y <-> ( X .< Y \/ X = Y ) ) )  |