Step |
Hyp |
Ref |
Expression |
1 |
|
pleval2.b |
|- B = ( Base ` K ) |
2 |
|
pleval2.l |
|- .<_ = ( le ` K ) |
3 |
|
pleval2.s |
|- .< = ( lt ` K ) |
4 |
1 2 3
|
pleval2i |
|- ( ( X e. B /\ Y e. B ) -> ( X .<_ Y -> ( X .< Y \/ X = Y ) ) ) |
5 |
4
|
3adant1 |
|- ( ( K e. Poset /\ X e. B /\ Y e. B ) -> ( X .<_ Y -> ( X .< Y \/ X = Y ) ) ) |
6 |
2 3
|
pltle |
|- ( ( K e. Poset /\ X e. B /\ Y e. B ) -> ( X .< Y -> X .<_ Y ) ) |
7 |
1 2
|
posref |
|- ( ( K e. Poset /\ X e. B ) -> X .<_ X ) |
8 |
7
|
3adant3 |
|- ( ( K e. Poset /\ X e. B /\ Y e. B ) -> X .<_ X ) |
9 |
|
breq2 |
|- ( X = Y -> ( X .<_ X <-> X .<_ Y ) ) |
10 |
8 9
|
syl5ibcom |
|- ( ( K e. Poset /\ X e. B /\ Y e. B ) -> ( X = Y -> X .<_ Y ) ) |
11 |
6 10
|
jaod |
|- ( ( K e. Poset /\ X e. B /\ Y e. B ) -> ( ( X .< Y \/ X = Y ) -> X .<_ Y ) ) |
12 |
5 11
|
impbid |
|- ( ( K e. Poset /\ X e. B /\ Y e. B ) -> ( X .<_ Y <-> ( X .< Y \/ X = Y ) ) ) |