| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							pltval.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							pltval.s | 
							 |-  .< = ( lt ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							elex | 
							 |-  ( K e. A -> K e. _V )  | 
						
						
							| 4 | 
							
								
							 | 
							fveq2 | 
							 |-  ( p = K -> ( le ` p ) = ( le ` K ) )  | 
						
						
							| 5 | 
							
								4 1
							 | 
							eqtr4di | 
							 |-  ( p = K -> ( le ` p ) = .<_ )  | 
						
						
							| 6 | 
							
								5
							 | 
							difeq1d | 
							 |-  ( p = K -> ( ( le ` p ) \ _I ) = ( .<_ \ _I ) )  | 
						
						
							| 7 | 
							
								
							 | 
							df-plt | 
							 |-  lt = ( p e. _V |-> ( ( le ` p ) \ _I ) )  | 
						
						
							| 8 | 
							
								1
							 | 
							fvexi | 
							 |-  .<_ e. _V  | 
						
						
							| 9 | 
							
								8
							 | 
							difexi | 
							 |-  ( .<_ \ _I ) e. _V  | 
						
						
							| 10 | 
							
								6 7 9
							 | 
							fvmpt | 
							 |-  ( K e. _V -> ( lt ` K ) = ( .<_ \ _I ) )  | 
						
						
							| 11 | 
							
								3 10
							 | 
							syl | 
							 |-  ( K e. A -> ( lt ` K ) = ( .<_ \ _I ) )  | 
						
						
							| 12 | 
							
								2 11
							 | 
							eqtrid | 
							 |-  ( K e. A -> .< = ( .<_ \ _I ) )  |