Metamath Proof Explorer


Theorem pltirr

Description: The "less than" relation is not reflexive. ( pssirr analog.) (Contributed by NM, 7-Feb-2012)

Ref Expression
Hypothesis pltne.s
|- .< = ( lt ` K )
Assertion pltirr
|- ( ( K e. A /\ X e. B ) -> -. X .< X )

Proof

Step Hyp Ref Expression
1 pltne.s
 |-  .< = ( lt ` K )
2 eqid
 |-  X = X
3 1 pltne
 |-  ( ( K e. A /\ X e. B /\ X e. B ) -> ( X .< X -> X =/= X ) )
4 3 3anidm23
 |-  ( ( K e. A /\ X e. B ) -> ( X .< X -> X =/= X ) )
5 4 necon2bd
 |-  ( ( K e. A /\ X e. B ) -> ( X = X -> -. X .< X ) )
6 2 5 mpi
 |-  ( ( K e. A /\ X e. B ) -> -. X .< X )