Metamath Proof Explorer


Theorem pltn2lp

Description: The less-than relation has no 2-cycle loops. ( pssn2lp analog.) (Contributed by NM, 2-Dec-2011)

Ref Expression
Hypotheses pltnlt.b
|- B = ( Base ` K )
pltnlt.s
|- .< = ( lt ` K )
Assertion pltn2lp
|- ( ( K e. Poset /\ X e. B /\ Y e. B ) -> -. ( X .< Y /\ Y .< X ) )

Proof

Step Hyp Ref Expression
1 pltnlt.b
 |-  B = ( Base ` K )
2 pltnlt.s
 |-  .< = ( lt ` K )
3 eqid
 |-  ( le ` K ) = ( le ` K )
4 1 3 2 pltnle
 |-  ( ( ( K e. Poset /\ X e. B /\ Y e. B ) /\ X .< Y ) -> -. Y ( le ` K ) X )
5 4 ex
 |-  ( ( K e. Poset /\ X e. B /\ Y e. B ) -> ( X .< Y -> -. Y ( le ` K ) X ) )
6 3 2 pltle
 |-  ( ( K e. Poset /\ Y e. B /\ X e. B ) -> ( Y .< X -> Y ( le ` K ) X ) )
7 6 3com23
 |-  ( ( K e. Poset /\ X e. B /\ Y e. B ) -> ( Y .< X -> Y ( le ` K ) X ) )
8 5 7 nsyld
 |-  ( ( K e. Poset /\ X e. B /\ Y e. B ) -> ( X .< Y -> -. Y .< X ) )
9 imnan
 |-  ( ( X .< Y -> -. Y .< X ) <-> -. ( X .< Y /\ Y .< X ) )
10 8 9 sylib
 |-  ( ( K e. Poset /\ X e. B /\ Y e. B ) -> -. ( X .< Y /\ Y .< X ) )