Metamath Proof Explorer


Theorem pltne

Description: The "less than" relation is not reflexive. ( df-pss analog.) (Contributed by NM, 2-Dec-2011)

Ref Expression
Hypothesis pltne.s
|- .< = ( lt ` K )
Assertion pltne
|- ( ( K e. A /\ X e. B /\ Y e. C ) -> ( X .< Y -> X =/= Y ) )

Proof

Step Hyp Ref Expression
1 pltne.s
 |-  .< = ( lt ` K )
2 eqid
 |-  ( le ` K ) = ( le ` K )
3 2 1 pltval
 |-  ( ( K e. A /\ X e. B /\ Y e. C ) -> ( X .< Y <-> ( X ( le ` K ) Y /\ X =/= Y ) ) )
4 3 simplbda
 |-  ( ( ( K e. A /\ X e. B /\ Y e. C ) /\ X .< Y ) -> X =/= Y )
5 4 ex
 |-  ( ( K e. A /\ X e. B /\ Y e. C ) -> ( X .< Y -> X =/= Y ) )